## Cascade Gateway Travel Demand Model

Bi-National and Regional Travel Models

## draft

## report

prepared for
Whatcom Council of Governments
prepared by
Cambridge Systematics, Inc.
with
TranSys International Consultants Limited
report

## Cascade Gateway Travel Demand Model

Bi-National and Regional Travel Models
prepared for
Whatcom Council of Governments
prepared by
Cambridge Systematics, Inc.
3239 198th Place SE
Sammamish, WA 98075
with
TranSys International Consultants Limited
date
June 2004

## Table of Contents

1.0 Introduction ..... 1-1
1.1 Objective ..... 1-1
1.2 Background ..... 1-1
1.3 Contents of this report ..... 1-2
2.0 Model Framework ..... 2-1
2.1 Geographic Coverage ..... 2-1
2.2 Universe of Trips ..... 2-3
2.3 Trip Purposes and Commodities ..... 2-3
2.4 Vehicle Classes ..... 2-4
2.5 Modes ..... 2-4
2.6 Time Periods ..... 2-4
3.0 Data Development ..... 3-1
3.1 Model Network ..... 3-1
3.2 Traffic Zone System ..... 3-3
3.3 Socioeconomic Data ..... 3-5
3.4 Origin-Destination Survey Data ..... 3-7
3.5 Border Wait Time Data ..... 3-8
3.6 Integration with Regional Models ..... 3-10
4.0 Passenger Models ..... 4-1
4.1 Season and Day of Week ..... 4-1
4.2 Passenger Trip Generation ..... 4-2
4.3 Passenger Trip Distribution ..... 4-4
4.4 Time of Day ..... 4-6
4.5 Border Crossing Choice ..... 4-7
5.0 Freight Models ..... 5-1
5.1 Season and Day of Week ..... 5-1
5.2 Freight Trip Generation ..... 5-1
5.3 Freight Trip Distribution ..... 5-7
Origin Choice Models ..... 5-7
Destination Choice ..... 5-11
5.4 Time of Day ..... 5-12
5.5 Border Crossing Choice ..... 5-15
6.0 Trip Assignment ..... 6-1
6.1 Route Choice ..... 6-1
6.2 Integration with Operations Model ..... 6-1
7.0 Model Validation ..... 7-1
7.1 Validation Data ..... 7-1
Passenger Model ..... 7-1
Freight Model ..... 7-1
7.2 Model Validation Results ..... 7-1
Passenger Model ..... 7-1
Freight Model ..... 7-11
8.0 Model Application ..... 8-1
8.1 Performance Measures ..... 8-1
Delay ..... 8-1
Reliability ..... 8-2
Emissions ..... 8-3
Safety ..... 8-4
8.2 Forecasts ..... 8-5
Appendix A. Origin-Destination Tables for Passenger Trips ..... A-1
Appendix B. Trip Generation Rates by Season and Day ..... B-1

## List of Tables

Table 2.1 Cascade Gateway Traffic Analysis Zone Structure ..... 2-3
Table 3.1 Facility Type of the Road Network ..... 3-3
Table 3.2 Extra Link Attributes ..... 3-3
Table 3.3 Traffic Zone Numbering Scheme ..... 3-5
Table 3.4 Year 2000 Population and Employment Totals (in million) ..... 3-6
Table 3.5 Year 2000 Employment Totals by Category ..... 3-6
Table 3.6 Trip Purposes Consolidation for IMTC OD Survey ..... 3-8
Table 3.7 Border Wait Time Data for Southbound and Northbound ..... 3-9
Table 3.8 Border Wait Time for Southbound (in Minutes). ..... 3-9
Table 3.9 Border Wait Time for Northbound (in Minutes) ..... 3-10
Table 4.1 Mean Trip Length for All Trip Purposes (in Miles) ..... 4-5
Table 4.2 Subarea Bias Parameters for Southbound AM Peak Period (Fall Weekday Model) ..... 4-9
Table 5.1 Truck Trip Generation Models ..... 5-3
Table 5.2 Freight Origin Choice Models - Fall (Weekday and Weekend) ..... 5-9
Table 5.3 Freight Origin Choice Models - Summer (Weekday and Weekend)5-10
Table 5.4 Freight Destination Choice Models - Fall (Weekday and Weekend) ..... d) 5-13
Table 5.5 Freight Destination Choice Models - Summer (Weekday and Weekend) ..... 5-14
Table 5.6 Truck Time-of-Day Factors by Season ..... 5-15
Table 7.1 Traffic Counts by Day of Week, Direction, Time of Day, and Port-of- Entry (Summer and Fall) ..... 7-2
Table 7.2 Trip Origin and Distribution Total by Trip Purposes (Fall Weekday)7-5
Table 7-3 Trip Origin and Distribution Total by Trip Purposes (Fall Weekend)7-6
Table 7-4 Trip Origin and Distribution Total by Trip Purposes (Summer Weekday) ..... 7-7
Table 7-5 Trip Origin and Distribution Total by Trip Purposes (Summer Weekend) ..... 7-8
Table 7-6 Model Results by Day of Week, Direction, Time of Day, and Port-of- Entry (Summer and Fall) ..... 7-9

Table 7-7 Percentage Errors of Model Results by Day of Week, Direction, Time
of Day, and Port-of-Entry (Summer and Fall) ..... 7-10
Table A. 1 Fall Weekday Origin-Destination Tables for Passenger Trips - Southbound Work Trips ..... A-2
Table A. 2 Fall Weekday Origin-Destination Tables for Passenger Trips - Northbound Work Trips ..... A-3
Table A. 3 Fall Weekday Origin-Destination Tables for Passenger Trips - Southbound Recreation Trips ..... A-4
Table A. 4 Fall Weekday Origin-Destination Tables for Passenger Trips - Northbound Recreation Trips ..... A-5
Table A. 5 Fall Weekday Origin-Destination Tables for Passenger Trips - Southbound Shopping Trips ..... A-6
Table A. 6 Fall Weekday Origin-Destination Tables for Passenger Trips - Northbound Shopping Trips ..... A-7
Table A. 7 Fall Weekday Origin-Destination Tables for Passenger Trips - Southbound Vacation Trips ..... A-8
Table A. 8 Fall Weekday Origin-Destination Tables for Passenger Trips - Northbound Vacation Trips ..... A-9
Table A. 9 Fall Weekend Origin-Destination Tables for Passenger Trips - Southbound Work Trips ..... A-10
Table A. 10 Fall Weekend Origin-Destination Tables for Passenger Trips - Northbound Work Trips ..... A-11
Table A. 11 Fall Weekend Origin-Destination Tables for Passenger Trips - Southbound Recreation Trips ..... A-12
Table A. 12 Fall Weekend Origin-Destination Tables for Passenger Trips - Northbound Recreation Trips ..... A-13
Table A. 13 Fall Weekend Origin-Destination Tables for Passenger Trips - Southbound Shopping Trips ..... A-14
Table A. 14 Fall Weekend Origin-Destination Tables for Passenger Trips - Northbound Shopping Trips ..... A-15
Table A. 15 Fall Weekend Origin-Destination Tables for Passenger Trips - Southbound Vacation Trips ..... A-16
Table A. 16 Fall Weekend Origin-Destination Tables for Passenger Trips - Northbound Vacation Trips ..... A-17
Table A. 17 Summer Weekday Origin-Destination Tables for Passenger Trips - Southbound Work Trips ..... A-18
Table A. 18 Summer Weekday Origin-Destination Tables for Passenger Trips - Northbound Work Trips ..... A-19
Table A. 19 Summer Weekday Origin-Destination Tables for Passenger Trips - Southbound Recreation Trips ..... A-20
Table A. 20 Summer Weekday Origin-Destination Tables for Passenger Trips - Northbound Recreation Trips ..... A-21
Table A. 21 Summer Weekday Origin-Destination Tables for Passenger Trips - Southbound Shopping Trips ..... A-22
Table A. 22 Summer Weekday Origin-Destination Tables for Passenger Trips - Northbound Shopping Trips ..... A-23
Table A. 23 Summer Weekday Origin-Destination Tables for Passenger Trips - Southbound Vacation Trips ..... A-24
Table A. 24 Summer Weekday Origin-Destination Tables for Passenger Trips - Northbound Vacation Trips ..... A-25
Table A. 25 Summer Weekend Origin-Destination Tables for Passenger Trips - Southbound Work Trips ..... A-26
Table A. 26 Summer Weekend Origin-Destination Tables for Passenger Trips - Northbound Work Trips ..... A-27
Table A. 27 Summer Weekend Origin-Destination Tables for Passenger Trips - Southbound Recreation Trips ..... A-28
Table A. 28 Summer Weekend Origin-Destination Tables for Passenger Trips - Northbound Recreation Trips ..... A-29
Table A. 29 Summer Weekend Origin-Destination Tables for Passenger Trips - Southbound Shopping Trips ..... A-30
Table A. 30 Summer Weekend Origin-Destination Tables for Passenger Trips - Northbound Shopping Trips ..... A-31
Table A. 31 Summer Weekend Origin-Destination Tables for Passenger Trips - Southbound Vacation Trips ..... A-32
Table A. 32 Summer Weekend Origin-Destination Tables for Passenger Trips - Northbound Vacation Trips ..... A-33
Table B. 1 Truck Production Trip Rates - Fall Weekday ..... B-6
Table B. 2 Truck Production Trip Rates - Fall Weekend ..... B-6
Table B. 3 Truck Production Trip Rates - Summer Weekday ..... B-7
Table B. 4 Truck Production Trip Rates - Summer Weekend ..... B-7
Table B. 5 Truck Attraction Trip Rates - Fall Weekday ..... B-8

Table B. 6 Truck Attraction Trip Rates - Fall Weekend ...................................... B-8
Table B. 7 Truck Attraction Trip Rates - Summer Weekday............................... B-9
Table B. 8 Truck Attraction Trip Rates - Summer Weekend............................... B-9

## List of Figures

Figure 2.1 Cascade Gateway Demand Model Framework ..... 2-1
Figure 2.2 Cascade Gateway Study Area and Regional Agencies ..... 2-2
Figure 3.1 Road Network ..... 3-2
Figure 3.2 Traffic Zone (Study Area) ..... 3-4
Figure 3.3 Traffic Zone (Greater Vancouver, Whatcom and Skagit) ..... 3-4
Figure 4.1 Overall Structure of the Passenger Model ..... 4-2
Figure 4.2 Greater Vancouver Subarea ..... 4-3
Figure 4.3 Southbound Shopping Trip Generation Rates for Canadian Residents4-4
Figure 4.4 Peaking Factors for Southbound and Northbound Traffic ..... 4-7
Figure 5.1 Greater Vancouver Districts ..... 5-2
Figure 5.2 Whatcom County Districts ..... 5-2
Figure 5.3 Skagit County Districts ..... 5-2
Figure 5.4 Puget Sound Districts ..... 5-3
Figure 5.5 Freight Trip Generation for Farm Commodities by Day of Week and Season ..... 5-4
Figure 5.6 Freight Trip Generation for Food Commodities by Day of Week and Season ..... 5-5
Figure 5.7 Freight Trip Generation for Wood Commodities by Day of Week and Season ..... 5-5
Figure 5.8 Freight Trip Generation for Manufacturing Commodities by Day of Week and Season ..... 5-6
Figure 5.9 Freight Trip Generation for Empty Trucks by Day of Week and Season ..... 5-6
Figure 5.10Freight Trip Generation for Bulk-Printed-Other Commodities by Day of Week and Season ..... 5-7
Figure 5.11Truck Time-of-Day Factors by Season ..... 5-15
Figure 6-1 Integration with Operations Model ..... 6-2

### 1.0 Introduction

### 1.1 Objective

The primary objective of the Bi-National and Regional Travel Model project is to serve bi-national and regional planning applications for evaluating impacts of travel demand now and into the future. As a result, the primary goal for this project is to provide sufficient information for decision-makers to evaluate future transportation investments with a strong degree of confidence. The list of stakeholders will include these decision-makers at the bi-national, state, and regional levels. The measures of success will include a list of performance measures that define the types of information that decision-makers will need to evaluate transportation investments.

The models developed in this project will take advantage of existing modelrelated data in the Whatcom County, Central Puget Sound, Greater Vancouver, and lower mainland B.C regions. All the models will be developed using the EMME/2 software platform in conjunction with ArcView to display results in GIS format. It will be capable of portraying travel demand information in a manner that is easily deciphered by the general public.

The Cascade Gateway bi-national travel demand model was developed using a merged set of regional networks and aggregated regional analysis zones. This model is being used by the Whatcom Council of Governments (WCOG), the Greater Vancouver Regional District (GVRD) and other IMTC member agencies to complete bi-national forecasting and analyses of border crossing alternatives.

The Cascade Gateway bi-national travel demand model estimates passenger and freight demand from socioeconomic and network data developed for both existing conditions and a future year forecast. The model was estimated using the Cross-Border Trade and Travel Study Origin-Destination Survey data on travel behavior. The model identifies demand throughout the study area (from Seattle to Vancouver) by trip purpose; origin-destination patterns; temporal variations (time of day, day of week, and seasons); border crossing choice and local routes for all passenger and freight demand.

### 1.2 BACKGROUND

The Cascade Gateway bi-national travel demand model was developed as one of three models in the Bi-National and Regional Travel Models project. These three models are described below:

1. A Cascade Gateway bi-national travel demand model was developed to enable forecasting and analyses of strategic levels of transportation demand and impacts relating to movement of people and goods across the following
four U.S.-Canada border crossings: 1) Peace Arch, 2) Pacific Highway, 3) Lynden/Aldergrove, and 4) Sumas/Abbotsford. The model will be used to evaluate traffic impacts of international phenomena. The Cascade Gateway travel demand model estimates passenger and freight demand from the origin-destination survey (Cross Border Travel Study) for both existing conditions and a future year forecast. The model identifies demand across the border by trip purpose, origin-destination patterns, temporal variations (time of day, day of week, and seasons) and ports of entry for both passenger and freight demand.
2. A Whatcom County regional travel demand model was developed using a countywide network and county-level analysis zones. This model will be used by WCOG and other local entities to complete regional and subregional forecasting and analyses for purposes, including growth management planning, transportation planning, project prioritization, and analyses of build out scenarios. The regional travel demand model estimates passenger demand by adapting existing local models for both existing conditions and a future year forecast. The model identifies demand throughout Whatcom County by trip purpose; origin-destination patterns; temporal variations (time of day, day of week, and seasons); and local routes for all passenger demand.
3. A Cascade Gateway operations model will be developed to assist in portraying traffic operations at and near border crossings. In addition to the discussed model components, it will be beneficial to identify ways to assess the operational aspects of the B.C.-WA border. The approach will use a simulation routine developed by Regal Decision Systems, Inc. for Federal Highway Administration (FHWA) and GSA known as the "Border Wizard." This is the only one of the three models that is not complete at this time.
Each of the models developed for this project has been integrated to the degree that this is useful and efficient. This integration requires data transfers from one model to the next.

### 1.3 CONTENTS OF THIS REPORT

This report contains eight sections and two appendices. This section is the introduction and includes the project objectives, background, and the overall modeling process. The second section is the model framework. The third section is the data development and includes the highway network, the traffic analysis zones, the socioeconomic data, the origin-destination survey data, border wait time data and the integration with the Cascade Gateway Model. The fourth section is the description of the passenger travel demand models, which includes trip generation, trip distribution, time of day, and border crossing choice models. The fifth section is on freight models, which includes trip generation, distribution, time of day, and border crossing choice models. The sixth section is on trip assignment of passenger and freight trips and the integration of these
data with the operations model. The seventh section is on model validation and includes a discussion of validation data sources, as well as the trip behavior and trip assignment validation. Finally, the eighth section includes a discussion of the model application, including performance measures and the forecasts.

### 2.0 Model Framework

The model framework was developed to identify the overall sequence and interaction of the individual model components. This framework is presented in Figure 2.1. The remainder of this section describes details of the model framework.

Figure 2.1 Cascade Gateway Demand Model Framework


### 2.1 GEOGRAPHIC Coverage

Based on the final results of the origin-destination survey, the areas of the GVRD, Lower Mainland (East and West) in British Columbia, and Whatcom County, Skagit County and Puget Sound in the U.S. represent the study area for the development of the Cascade Gateway travel demand model, as presented in Figure 2.2. This study area is a compilation of four regions:

1. Greater Vancouver Regional District (GVRD) in Vancouver;
2. Whatcom Council of Governments (WCOG);
3. Skagit Council of Governments (SCOG); and
4. Puget Sound Regional Council (PSRC) in Seattle.

This recommendation was based on the fact that 80 to 90 percent of all auto travelers crossing this border reside in this region and approximately 90 percent of all truck origins and destinations are within this region.

Figure 2.2 Cascade Gateway Study Area and Regional Agencies


The focus of the study area was to model "internal trips" crossing the border with origins/destinations within this study area and to separately model "external trips" that cross the border but have origins/destinations outside the study area. The primary reason for separating the internal and external trips is to take advantage of the wealth of socioeconomic, demographic and network data that is available within the study area without requiring that these same data be developed for all areas outside the study area. This allows the internal trip models to be more sophisticated and the external trip models to be based on more simplified methods. The traffic analysis zones (TAZs) are aggregations of the regional TAZs from each of the four regions in the study area. The level of detail is greater near the border and more aggregate further away. The aggregations are provided in Table 2.1.

Table 2.1 Cascade Gateway Traffic Analysis Zone Structure

| Region | Agency | Regional Zones | Cascade <br> Gateway Zones | Ratio |
| :--- | :---: | :---: | :---: | :---: |
| Greater Vancouver | GVRD | 726 | 102 | 7.1 |
| Whatcom County | WCOG | 246 | 31 | 7.9 |
| Skagit County | SCOG | 182 | 9 | 20.2 |
| Puget Sound | PSRC | 938 | 19 | 49.4 |
| Total |  | $\mathbf{2 , 0 9 2}$ | $\mathbf{1 6 1}$ | $\mathbf{1 3 . 0}$ |

### 2.2 UNIVERSE OF TRIPS

The current universe of trips is all vehicular traffic across the U.S. and Canadian border at the following four ports of entry:

1. Peace Arch;
2. Pacific Highway;
3. Lynden/Aldergrove; and
4. Sumas/Abbotsford.

The vehicular traffic includes all types of autos and trucks, but does not include air, bus, rail, or pedestrian crossings.

### 2.3 Trip Purposes and Commodities

Trip purposes for the Cascade Gateway travel demand model were developed from the trip purposes in the origin-destination survey data. For passenger models, these purposes are the following:

- Work;
- Recreation;
- Shopping;
- Vacation; and
- External.

Since there were similarities between the characteristics of the work commute and business-related trips and these were the two smallest trip purposes, these trip purposes were combined into a single work-related purpose.
Commodities are used for freight models instead of trip purposes to describe the various characteristics of freight movements. These are used because commodity flow is the primary factor that is driving demand. The commodity classes in the Cascade Gateway model are the following:

- Farm;
- Food;
- Manufacturing;
- Wood;
- Empty; and
- Printed matter, bulk and other.

The commodity flow data was disaggregated to zones with this set of commodity/industry classifications.

### 2.4 Vehicle Classes

Vehicle classes are those vehicle types are important to separate for either policy purposes or for evaluating impacts. For passenger cars, vehicle classes could include auto passenger cars, recreational vehicles and campers, vehicles with trailers, and service and delivery vehicles. From the origin-destination survey data, we know that 98 percent of all passenger vehicles crossing the border are auto passenger cars, so we developed only one vehicle class for passenger trips.

For trucks, vehicle classes are defined by the number of axles and could include one, two, three, four, five or six or more axle groups. From the origin-destination survey data, we know that 89 percent of all trucks have five or more axles (also termed heavy trucks), so we developed a single vehicle class for truck trips as well.

### 2.5 MODES

There are two modes for this study: autos for passenger travel and trucks for goods movement. Both are highway modes. Other modes of interest include air, water, rail, bus and non-motorized modes for passenger travel and air, water, and rail modes for goods movement. Our approach included developing only the highway modes but allows for the future inclusion of the modeling of other modes.

### 2.6 Time Periods

Time periods were designed to capture different trip-making characteristics at different times of day, days of the week, and seasons. These characteristics vary by purpose and direction. The following time periods were used to capture the varying characteristics of different types of trips:

- Three time periods during the day represent a.m. peak (8:00 a.m. to 11:00 a.m.), p.m. peak (2:00 p.m. to 5:00 p.m.) and off-peak (all remaining hours) conditions;
- Two time periods during the week represent average weekday and average weekend conditions; and
- Two seasons during the year represent peak conditions (in summer) and offpeak conditions (in fall).
The same time periods were used for passenger cars and trucks.


### 3.0 Data Development

### 3.1 Model Network

The road network is one of the main model components for estimating trip distribution, cross-border choice, and route choice options. This section describes the road network elements in the Cascade Gateway model.

The road network of the Cascade Gateway Model is shown in Figure 3.1. Both passenger cars and trucks share the same road network. The road network was developed by extracting subsets of network data, including lanes, speeds and capacities (if available) from the four regional models - Greater Vancouver, Whatcom County, Skagit County and the Puget Sound Region. In addition, background traffic information including congested travel time and volume were also imported from regional models to the Cascade Gateway model. Background traffic for a.m. peak, p.m. peak and off peak periods were created. Time period factors were applied for regional models which did not have background traffic for all three time periods.

The road network is comprised of all major highways, freeways, and primary arterials for supporting the development of the cross-border model. The digital network consists of approximately 4,929 nodes and 10,310 links (road segments). The unit of length is specified as miles. Table 3.1 shows the facility type of the road network.

As the Cascade Gateway model is developed by integrating regional models, this approach would be difficult to provide a common basis for developing the volume delay functions (VDFs). Therefore, background traffic, which was extracted from regional models, was used to substitute for VDFs. Extra link attributes (@am, @p.m., @off), as shown in Table 3.2, were introduced for storing the congested travel time. The resulting Cascade Gateway model has a strong correlation with regional models. Any changes to regional models will have an influence on cross-border trips generated by the Cascade Gateway model. One of the advantages of this model structure is to generate accurate cross-border demand forecasting results by retaining model results produced from each regional model.

Figure 3.1 Road Network


Table 3.1 Facility Type of the Road Network

| Facility Type | Description |
| :--- | :--- |
| 1 | Highway 1, State Highway 5 |
| 2 | Highway (GVRD) |
| 3 | Major Arterial (GVRD) |
| 4 | Minor Arterial (GVRD) |
| 5 | Major Arterial (Whatcom) |
| 100 | Centroid Connector |

Table 3.2 Extra Link Attributes

| Extra Link | Description |
| :--- | :---: |
| Attributes | a.m. peak congested time |
| @ am | p.m. peak congested time |
| @ p.m. | Off-peak congested time |
| @ off |  |

### 3.2 Traffic Zone System

The Cascade Gateway model is composed of 174 traffic zones, which provides coverage of the four regions of Greater Vancouver, Whatcom County, Skagit County, and Puget Sound Region. The traffic zones were created by aggregating the traffic zones within each existing regional model. For instance, Greater Vancouver Transportation Model which originally had 726 traffic zones at its regional level was aggregated to 102 traffic zones in the Cascade Gateway model. The zone size varies according to the distance from the border crossing. The zone system becomes more detailed around the border crossing area to provide a higher level of accuracy in forecasting cross-border trips.
The traffic zone numbering system has been established in a way that one can easily identify where a traffic zone is located among the four regions. All road network nodes are represented by a six-digit zone numbering system and can readily be distinguished from traffic zone nodes, which have three digits. Figure 3.2 shows the traffic zone map for the entire study area. Figure 3.3 is a traffic zone map focusing on Greater Vancouver, Whatcom County, and Skagit County regions. Table 3.3 provides a summary of the traffic zone numbering scheme by region.

Figure 3.2 Traffic Zone (Study Area)


Figure 3.3 Traffic Zone (Greater Vancouver, Whatcom and Skagit)


Table 3.3 Traffic Zone Numbering Scheme

| Region | Number of Zones | Numbering Schedule |
| :--- | :---: | :---: |
| GVRD | 102 | $1-102$ |
| Whatcom County | 31 | $201-233$ |
| Skagit County | 9 | $301-310$ |
| PSRC | 19 | $401-419$ |
|  | Number of |  |
| Region | External Zones | Numbering Schedule |
| GVRD | 4 | $116-119$ |
| Whatcom County | 2 | $250-251$ |
| Skagit County | 2 | $350-351$ |
| PSRC | 4 | $451-454$ |

External zones are located at the entry points to the study area to account for traffic entering, leaving, or passing through the study area. They include:

- Highway 99 - North of Horseshoe Bay (Greater Vancouver);
- Horseshoe Bay Ferry Terminal (Greater Vancouver);
- Tsawwassen Ferry Terminal (Greater Vancouver);
- Highway 1 - east of Hope (Greater Vancouver);
- Lummi Island (Whatcom County);
- Whidbey Island (Skagit County);
- State Highway 20 - East of State Highway 530 (Skagit County);
- State Highway 5 - South of State Highway 510 (PSRC);
- State Highway 90 - East of Grotto (PSRC); and
- State Highway 2 - East of Snoqualmie Pass (PSRC).

The approximate location of external zones and the zone number system are also shown in Figure 3.2 and Figure 3.3, respectively.

### 3.3 Socioeconomic Data

The demand for U.S./ Canada cross-border trip making behavior is derived from socioeconomic estimates that are contained within traffic zones. Socioeconomic data for year 2000/2001 was provided by the four regions. This information includes total population and employment by industrial category. Year 2000/2001 population data was not available for Skagit County. Interpolation
was needed to project year 1998 household data to year 2001 household data. A conversion factor ${ }^{1}$ was then applied to the projected 2001 household data to obtain year 2001 total population. Table 3.4 shows the total population and employment for the four regions. Table 3.5 illustrates the industrial category used for the four regions. There are three main employment categories defined in the passenger model: service, non-service and retail employment categories. As each region has its own employment categories, category consolidation is needed to generate a consistent set of socioeconomic data. Each traffic zone contains detailed socioeconomic data, which is used to determine the amount of cross-border travel generated.

Table 3.4 Year 2000 Population and Employment Totals (in million)

|  | Year 200 |  |
| :--- | :---: | :---: |
| Region | Total Population | Total Employment |
| GVRD | 2.19 | 1.06 |
| Whatcom County | 0.16 | 0.08 |
| Skagit County | 0.11 | 0.04 |
| PSRC | 3.28 | 1.75 |
| Total | 5.74 | 2.93 |

Table 3.5 Year 2000 Employment Totals by Category

| Regions | GVRD | Whatcom County | Skabig County | PSRC |
| :--- | ---: | :---: | :---: | ---: |
| Non Service | 346,400 | 19,200 | 15,800 | 572,300 |
| Primary | 19,400 | 2,200 | 2,300 | 9,000 |
| Manufacture | 98,000 | 8,000 | 6,200 | 231,100 |
| TCU | 99,700 | - | 1,700 | 108,300 |
| Wholesale | 66,000 | 4,500 | 2,400 | 108,300 |
| Other | - | 4,500 | - | - |
| Retail | 131,100 | 22,900 | 11,500 | 320,600 |
| Service | 580,100 | 39,200 | 17,000 | 856,400 |
| FIRE | 176,800 | 28,500 | 1,800 | 684,600 |
| Other | 403,300 | 10,700 | 15,100 | 171,700 |
| Total | $1,057,600$ | 81,300 | 44,300 | $1,749,300$ |

${ }^{1}$ The conversion factor, 2.51 people per household, was calculated based on the 2000/ 2001 socioeconomic data from Whatcom County.

### 3.4 Origin-Destination Survey Data

A model calibration of a travel demand forecasting model depends largely on the model input data and baseline travel survey information. The Cascade Gateway model was calibrated to observed border crossing travel behavior and data that were obtained from a variety of sources. The IMTC cross-border origindestination (OD) survey was one of the data sources used for model calibration. The IMTC cross-border survey consisted of two waves of roadside surveys at the U.S./Canada border crossing during the summer and fall of 2000. Both passenger and commercial vehicle surveys (weekdays and weekends) were conducted for a sample of vehicles at the four U.S./Canada border crossings.

Several procedures were involved for analyzing the OD survey database prior to model calibration. One of the steps was to map all origins and destinations with the traffic zone system defined in the Cascade Gateway model. Another key step was to identify different trip purposes by residency (U.S. or Canada). Initially, the OD survey data was aggregated into 18 main trip purposes that described cross-border travel throughout the survey period as shown in Table 3.6. External trips were defined as trips either originating from or destined to a location outside of the study area. Further trip consolidation was completed based on the mean trip length. For example, to/from other trips were combined with to/from recreation trips as their trip lengths were similar. Finally, the entire OD survey database was factored to a.m. peak (8:00 a.m. to 11:00 a.m.), p.m. peak (2:00 p.m. to 5:00 p.m.) and off peak by port-of-entry, direction, day of week and time of day. Daily trips were obtained by aggregating results from different time periods. Different OD tables and traffic counts were generated to capture varying cross-border travel characteristics for model calibration. The travel characteristics considered include:

- Trip purposes (work, recreation, shopping, vacation, and external trips);
- Residency (U.S., Canada);
- Port-of-entry (Peace Arch, Pacific Highway, Lynden/Aldergrove and Sumas/Abbotsford border crossings);
- Direction (southbound, northbound);
- Day of week (weekday, weekend);
- Time of day (a.m. peak, p.m. peak, off peak, and daily); and
- Season (summer, fall).

Table 3.6 Trip Purposes Consolidation for IMTC OD Survey

| Original Trip Purpose | Consolidated Trip Purpose |
| :--- | :--- |
| To Work | To Work |
| From Work | From Work |
| To Work Related | To Work |
| From Work Related | From Work |
| To Recreation | To Recreation |
| From Recreation | From Recreation |
| To Shop | To Shopping |
| From Shop | From Shopping |
| To Vacation | To Vacation |
| From Vacation | From Vacation |
| To Other | To Recreation |
| From Other | From Recreation |
| To Home (Within the study area) | To Home |
| From Home (Within the study area) | From Home |
| To Other Canadian Cities (External) | To External |
| From Other Canadian Cities (External) | From External |
| To Other American Cities (External) | From External |
| From Other American Cities (External) | From External |

### 3.5 Border Wait Time Data

Border wait time data is also important for model calibration. However, only limited data is available for the four U.S./ Canada border crossings. Year 2000 to year 2002 border wait time data provided by the U.S. Citizenship and Immigration Services (USCIS, formerly INS) and the Canada Revenue Agency (CRA, formerly CCRA) were used for calibrating the passenger model. These border wait time data were the best estimates available during the time of model calibration.

Table 3.7 presents the border wait time data used for autos and trucks that were used in model calibration. Year 2000 INS border wait times, as shown in Table 3.8, was used for the Pacific Highway and Peace Arch border crossings, whereas year 2002 INS border wait time data were used for Lynden and Sumas border crossings. For northbound trips, year 2002 border wait time data provided by CCRA were used for model calibration. It was assumed that the border wait times at the Lynden/Aldergrove border crossing were similar to those at the Sumas/Abbottsford border crossing.

Table 3.7 Border Wait Time Data for Southbound and Northbound

|  | INS Data (Southbound) |  |  | CCRA Data (Northbound) |  |
| :--- | :---: | :---: | :--- | :---: | :---: |
| Border Crossing | Year 2000 | Year 2002 |  | Year 2000 | Year 2002 |
| Peach Arch | $\checkmark$ |  |  | $\checkmark$ |  |
| Pacific Hwy | $\checkmark$ |  |  | $\checkmark$ |  |
| Lynden/Aldergrove |  | $\checkmark$ |  |  |  |
| Sumas/Abbotsford |  | $\checkmark$ |  |  | $\checkmark$ |

Table 3.8 Border Wait Time for Southbound (in Minutes)

| Border Crossing | Fall Weekday |  |  | Fall Weekend |  |  | Summer Weekday |  |  | Summer Weekend |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AM Peak | PM Peak | Off Peak | $\begin{gathered} \text { AM } \\ \text { Peak } \end{gathered}$ | $\begin{gathered} \text { PM } \\ \text { Peak } \end{gathered}$ | Off Peak | $\begin{gathered} \text { AM } \\ \text { Peak } \end{gathered}$ | $\begin{gathered} \text { PM } \\ \text { Peak } \end{gathered}$ | Off Peak | AM Peak | $\begin{gathered} \text { PM } \\ \text { Peak } \end{gathered}$ | Off Peak |
| Autos |  |  |  |  |  |  |  |  |  |  |  |  |
| Peach Arch | 3 | 4 | 3 | 8 | 37 | 20 | 14 | 25 | 16 | 31 | 86 | 52 |
| Lynden/Aldergrove | 2 | 1 | 1 | 3 | 2 | 3 | 9 | 19 | 15 | 13 | 41 | 21 |
| Pacific Hwy | 2 | 3 | 3 | 9 | 36 | 24 | 9 | 23 | 15 | 28 | 88 | 41 |
| Sumas/Abbotsford | 2 | 2 | 1 | 2 | 3 | 1 | 7 | 14 | 9 | 8 | 13 | 13 |
| Trucks |  |  |  |  |  |  |  |  |  |  |  |  |
| Lynden/Aldergrove | 13 | 21 | 8 | 0 | 0 | 0 | 6 | 21 | 7 | 0 | 16 | 5 |
| Pacific Hwy | 18 | 25 | 18 | 14 | 16 | 19 | 23 | 24 | 20 | 16 | 13 | 13 |
| Sumas/Abbotsford | 13 | 21 | 8 | 0 | 0 | 0 | 6 | 21 | 7 | 0 | 16 | 5 |

Border wait times were weighted by volume based on the year 2000 IMTC 24hour volume profile. Border wait times for northbound border crossings are shown in Table 3.9.

Table 3.9 Border Wait Time for Northbound (in Minutes)

| Border Crossing | Fall Weekday |  |  | Fall Weekend |  |  | Summer Weekday |  |  | Summer Weekend |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AM <br> Peak | PM <br> Peak | Off Peak | AM <br> Peak | PM <br> Peak | Off <br> Peak | AM <br> Peak | PM <br> Peak | Off Peak | AM <br> Peak | PM <br> Peak | Off Peak |
| Autos |  |  |  |  |  |  |  |  |  |  |  |  |
| Peach Arch | 2 | 8 | 7 | 10 | 9 | 16 | 6 | 16 | 11 | 16 | 28 | 34 |
| Lynden/Aldergrove | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 13 | 12 | 1 | 9 | 12 |
| Pacific Hwy | 4 | 8 | 7 | 6 | 7 | 8 | 4 | 9 | 6 | 9 | 7 | 4 |
| Sumas/Abbotsford | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 13 | 12 | 1 | 9 | 12 |
| Trucks |  |  |  |  |  |  |  |  |  |  |  |  |
| Lynden/Aldergrove | 1 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 |
| Pacific Hwy | 7 | 20 | 14 | 18 | 8 | 14 | 12 | 15 | 13 | 11 | 9 | 9 |
| Sumas/Abbotsford | 1 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 0 | 0 |

### 3.6 Integration with Regional Models

The Cascade Gateway model has a strong correlation with the four regional models. Any changes to the regional models will have an influence on crossborder trips generated by the Cascade Gateway model.
When road network changes are made in any one of the four regional models, particularly in the Greater Vancouver and Whatcom County models, the resulting congested travel time, volume, and new road facilities should be imported into the Cascade Gateway model in order to update travel impedances and the road network. If significant road network changes are made, recalibrating the Cascade Gateway model may be necessary.

### 4.0 Passenger Models

The passenger model structure took a form similar to the traditional 4-step travel demand forecasting model. The model was calibrated to the year 2000 IMTC OD survey data. The passenger models have been developed based on a variety of information sources, including:

- The year 2000 IMTC Cross-Border OD Survey;
- U.S./Canada border wait time information (supplied by INS and CCRA); and
- Socioeconomic information and road networks provided by TransLink, Whatcom County, Skagit County, and the Puget Sound Region.
The model consists of three time periods: a.m. peak period, p.m. peak period and off peak period. Combining all time periods generates a 24 -hour model. To capture the changes in cross-border travel characteristic under temporal variations, four models have been developed that respectively estimate border crossing trips made during a summer weekday, summer weekend, fall weekday and fall weekend. They all have been calibrated to year 2000/2001 conditions. All models identify cross-border demand by trip purpose, origin-destination patterns, temporal variations, and ports of entry. This section describes the subcomponents of the passenger models in detail.


### 4.1 Season and Day of Week

The overall model structure of the passenger model is presented in Figure 4.1. The entire modeling procedure consists of several stages:

- The model begins with a daily trip generation model, which produces daily cross-border trips mainly based on socioeconomic data;
- The next stage is a daily cross-border trip distribution that estimates crossborder travel flows between every origin and every destination based on the total production and attraction obtained from the previous stage;
- After trip distribution, daily cross-border trips are converted to a.m. peak period, p.m. peak period, and off peak period cross-border trips;
- Following time slicing, the border choice model estimates the percentage of border crossing trips that use Peace Arch, Pacific Highway, Lynden/ Aldergrove, and Sumas/ Abbotsford border crossings; and
- Finally, trip assignment determines the actual route taken by cross-border trips and assigns them to the road network.
Cross-border travel exhibits temporal change. To enable the model to estimate cross-border travel demand for a particular time period within the year, four
models have been developed to cover summer weekdays, summer weekends, fall weekdays, and fall weekends. Each model retains the same model structure. Annual cross-border traffic can also be generated by applying annual factors to the four passenger car models.

Figure 4.1 Overall Structure of the Passenger Model


### 4.2 Passenger Trip Generation

Trip generation equations estimate the number of daily cross-border trips produced and attracted by each traffic zone. They are a fundamental component of the passenger model. The trip generation model has been developed in such a way that it is sensitive to changes in border wait times and exchange rates. Factoring procedures have been incorporated into the trip generation model to reflect changes to cross-border demand as a result of changes in the exchange rate. Socioeconomic data collected from all four regions were used for developing the trip generation model.

Subarea trip rates were used for estimating total production and attraction trips at each zone. A total of 11 subareas within the entire study area were identified to support development of daily trip rates. Greater Vancouver was aggregated into five subareas, as shown in Figure 4.2, while Whatcom County was grouped into four subareas, mainly Point Roberts, Blaine/Ferndale, Lynden/Sumas, and Bellingham. Skagit County and PSRC were considered as two subareas because they are located further away from the U.S./Canada border crossings.

Figure 4.2 Greater Vancouver Subarea


Subarea trip production and attraction equations were developed separately for different trip purposes, subareas, direction, and country of residency. As a result, a total of 176 trip generation equations were developed for each model. Figure 4.3 shows the trip generation rates for southbound Canadian shopping trips. The trip production variable is total population and the trip attraction variable is retail employment. In general, trip generation rates for shopping trips are higher on weekends than on weekdays. People who live close to the border crossings tend to make more cross-border trips. Trip rates for other trip purposes are shown in Appendix A.

Figure 4.3 Southbound Shopping Trip Generation Rates for Canadian Residents



### 4.3 Passenger Trip Distribution

Trip distribution determines the number of cross-border trips between origindestination pairs for each trip purpose. This is a multi-step process that starts with the calculation of travel impedances between OD pairs. The impedance matrices are then used to calculate friction factors, which describe the propensity to travel between different cross-border locations. Trip distribution models were calibrated by trip purpose, direction, and residency, based on travel impedance and the trip length estimates developed from the cross-border OD survey. Mean trip length estimates for the different trip purposes are shown in Table 4.1. The
trip distribution model has a gravity model formulation, but it is unconstrained. This would be appropriate for an inter-urban model where the trip ends are not fixed. A Fratar model is used for external trips.

Table 4.1 Mean Trip Length for All Trip Purposes (in Miles)
Canadian Residency

| Trip purpose | Mean Trip Length (SB) |  |  |  | Mean Trip Length (NB) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Summer |  | Fall |  | Summer |  | Fall |  |
|  | wkday | wkend | wkday | wkend | wkday | wkend | wkday | wkend |
| Work | 54 | 60 | 48 | 54 | 40 | 59 | 36 | 64 |
| Recreation | 46 | 72 | 42 | 72 | 43 | 61 | 45 | 53 |
| Shopping | 33 | 40 | 23 | 44 | 28 | 31 | 22 | 31 |
| Vacation | 85 | 106 | 104 | 119 | 71 | 73 | 85 | 73 |
| Externals | 155 | 154 | 143 | 150 | 145 | 151 | 141 | 145 |

American Residency

| Trip purpose | Mean Trip Length (SB) |  |  |  | Mean Trip Length (NB) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Summer |  | Fall |  | Summer |  | Fall |  |
|  | wkday | wkend | wkday | wkend | wkday | wkend | wkday | wkend |
| Work | 70 | 72 | 51 | 83 | 58 | 65 | 66 | 77 |
| Recreation | 72 | 83 | 55 | 86 | 62 | 70 | 52 | 85 |
| Shopping | 52 | 68 | 55 | 52 | 67 | 54 | 36 | 62 |
| Vacation | 103 | 130 | 84 | 114 | 120 | 100 | 123 | 116 |
| Externals | 144 | 160 | 136 | 161 | 139 | 138 | 142 | 130 |

Travel impedance is defined as a function of congested travel time and border wait time, as shown in Equation 4.1. The beta $(\beta)$ coefficient has been calibrated to the trip length distribution for each trip purpose, by direction and residency. Following the computation of travel impedance, gravity models were calibrated for each trip purpose by direction and residency. As a result, 16 gravity models (four trip purposes, two direction, and two residencies) were developed for each model. The general formulation of the gravity model is presented in Equation 4.2:

Equation $4.1 \quad F_{i j}^{p}=\exp \left(-\beta \cdot\left(C T_{i j}+B W T\right)\right)$
Where:
$C T_{i j}=$ Congested travel time from origin $i$ to destination $j$
$B W T=$ Border wait time

## Equation $4.2 \quad T_{i j}^{p}=\alpha_{p} \cdot\left(X_{1 i} X_{2 j} F_{i j}^{p}\right)$

Where:
$T_{i j}^{p}=$ Cross-border trip from origin $i$ to destination $j$ for trip purpose p
$X_{1 i}=$ Subarea trip production
$X_{2 j}=$ Subarea trip attraction
$F_{i j}^{p}=$ Travel impedance
$\alpha_{p}=$ Calibration coefficient
The gravity model distributes trips according to travel impedances in the transportation system. As the model is sensitive to travel impedances on the network, sufficient cross-border trips could not be generated to Skagit County and PSRC, where travel impedances are relatively large. Therefore, K-factors, with a range from 0 to 10, were applied to Skagit County and PSRC for adjusting the remaining differences between observed and predicted cross-border trips that were not captured by the friction factor.

### 4.4 TIME OF DAY

After daily trip generation and distribution, the next modeling step is to convert daily trip matrices to different time period matrices (a.m. peak, p.m. peak, and off peak). This procedure involves applying peaking factors, which were estimated from the origin-destination survey, to daily trip matrices. Figure 4.4 shows the peaking factors for southbound and northbound directions.

Figure 4.4 Peaking Factors for Southbound and Northbound Traffic



### 4.5 Border Crossing Choice

The border crossing choice model estimates the percentage of border crossing trips that use the Peace Arch, Pacific Highway, Lynden, and Sumas border crossings. This stage requires the following inputs from previous calculations: cross-border trip matrices by time of day and direction, and travel impedances. Border crossing choice is a multi-step process. The first step involves estimating coefficients for border crossing choice variables by time of day and direction. A multinomial logit model (LIMDEP) was used to determine the coefficients for border crossing choice variables. These coefficients are presented by time period and direction in Table 4.2.

The second step estimates the probability of cross-border trips that use the Peace Arch, Pacific Highway, Lynden, and Sumas border crossings from the previous multinomial logit models. Both of these processes use a set of multinomial logit models as shown in Equation 4.3 and a utility function for the border crossing choice model is shown in Equation 4.4.

Equation 4.3

$$
P_{i j(C=1)}=\frac{\exp \left(U_{i j(C=1)}\right)}{\sum_{x=1}^{4} \exp \left(U_{i j(C=x)}\right)}
$$

where:

$$
\begin{aligned}
U_{i j(C=x)}= & \text { Utility function for using border crossing } \mathrm{x} \text { for a cross-border trip } \\
& \text { from origin } i \text { to destination } j
\end{aligned}
$$

Equation $4.4 \quad U_{i j(C=x)}=\beta_{(\text {time, dir })} \cdot\left(\mathrm{B}_{\text {subarea }}+C T_{i j(C=x)}+B W T_{(C=x)}\right)$
where:

$$
\begin{aligned}
\beta_{(t i m e, d i r)}= & \begin{array}{l}
\text { Estimated coefficient by time period and direction from the } \\
\\
\text { discrete choice model }
\end{array} \\
\mathrm{B}_{\text {subarea }}= & \text { Subarea bias } \\
C T_{i j(C=x)}= & \text { Congested travel time from origin } i \text { to destination } j \text { through } \\
& \text { border crossing } \mathrm{c}=\mathrm{x}
\end{aligned}
$$

These equations were calibrated for each time period (a.m. peak, p.m. peak and off peak) and direction (northbound and southbound). Table 4.3 shows the calibrated subarea bias parameters for southbound direction during a.m. peak period for the fall weekday model. The subarea bias parameters are used in combination with the congested travel time and border wait time to establish the proportion of cross-border trips that use a given border crossing. Note that a negative subarea bias indicates one border crossing is preferred over another when the impedances are the same. The reason for including the subarea bias is because geographic location has an impact on determining which border crossing will be used. For example, people who reside in the west side of Vancouver (in British Columbia) are unlikely to drive all the way to the eastern border crossings (Sumas and Lynden) when the border wait time at Peace Arch increases by ten minutes.

Table 4.2 Estimated Coefficients by Time Period and Direction from the Discrete Choice Model

|  | AM Peak <br> Period | PM Peak <br> Period | Off-peak <br> Period |
| :--- | :---: | :---: | :---: |
| Southbound | -0.1023 | -0.1058 | -0.1267 |
| Fall Weekday | -0.1235 | -0.0987 | -0.0832 |
| Fall Weekend | -0.1203 | -0.0823 | -0.0919 |
| Summer Weekday | -0.1115 | -0.0701 | -0.0843 |
| Summer Weekend | -0.0709 | -0.0626 | -0.0487 |
| Northbound | -0.043 | -0.0543 | -0.0413 |
| Fall Weekday | -0.0431 | -0.0477 | -0.0498 |
| Fall Weekend | -0.0377 | -0.0431 | -0.0461 |
| Summer Weekday |  |  |  |
| Summer Weekend |  |  |  |

Table 4.3 Subarea Bias Parameters for Southbound AM Peak Period (Fall Weekday Model)

| Subarea | Peace Arch | Pacific Hwy | Lynden/Aldergrove | Sumas/Abbotsford |
| :--- | :---: | :---: | :---: | :---: |
| Rich, N/W Van, Van | -37.12 | -29.76 | 0.00 | 15.03 |
| Bur, NW, NE | -28.52 | -35.36 | 0.00 | -14.02 |
| Surrey, Delta, Pt | 27.82 | -23.00 | 0.00 | -16.05 |
| Roberts |  |  |  |  |
| Langley | -11.52 | -24.36 | -14.54 | 0.00 |
| Fraser Valley | -7.10 | -18.01 | 0.00 | -6.04 |
| External | -40.31 | 0.00 | -4.04 | 1.30 |

### 5.0 Freight Models

### 5.1 SEASON AND Day OF Week

The IMTC cross-border trade and travel survey was conducted at the U.S./ Canada border during summer and fall of 2000, on both, weekdays and weekends. So the freight movements captured by the surveys are modeled for the following seasons and days of week:

- Fall Weekday;
- Fall Weekend;
- Summer Weekday; and
- Summer Weekend.

The commodity being transported by the trucks was also gathered in the surveys and grouped into eight broad categories: bulk, farm, food, wood, printed matters, manufacturing, empty, and unknown. These commodities serve as trip purposes and the trucks carrying them have unique characteristics.
Extensive traffic count data was also collected for different seasons and at all the border crossing locations. This observed data was used as control totals to develop expansion factors by season, border crossing location, time of day and direction of travel. These factors are then applied to the IMTC survey truck database to expand the sample to reflect the actual truck population crossing the U.S./ Canada border.

### 5.2 Freight Trip Generation

The expanded truck trip database is used to develop the freight trip generation model that comprises of production and attraction models. These models involve the derivation of trip rates by commodity group and district for all the four seasons. The independent variables that were used to develop these models include socioeconomic information, such as households and employment by industry; namely, manufacturing, construction, wholesale, retail, service and agriculture.
Owing to similar characteristics of various TAZs in close proximity to one another, these TAZs were aggregated further to large districts for thip generation analyses. The GVRD TAZs were aggregated to eight districts, Whatcom County TAZs to three districts, and one each for Skagit County and Puget Sound region. The truck trip rates were then computed at the district level by commodity group and season. Figures 5.1 through 5.4 show various districts used for freight trip generation models.

Figure 5.1 Greater Vancouver Districts


Figure 5.2 Whatcom County Districts


Figure 5.3 Skagit County Districts


Figure 5.4 Puget Sound Districts


In order to better understand the relationships between socioeconomic data and truck trip generation, origin choice models were first estimated. These choice models, estimated by commodity group, gave an indication of the types of variables that influenced the production of truck trips from a district. It was found that different combinations of employment were significantly driving the production of trucks for each commodity type. The commodities 'bulk', 'printed matter', and 'unknown' were grouped into 'other' category because of low sample sizes. These origin choice models are explained in more detail in the ensuing section. The trip generation models by commodity group are presented in Table 5.1.

Table 5.1 Truck Trip Generation Models

| Commodity | Combination of Employment |
| :--- | :--- |
| Other (Bulk + Printed Matter + Unknown) | Wholesale, Construction, Agriculture, Manufacturing |
| Farm | Agriculture |
| Food | Wholesale, Retail, Agriculture |
| Wood | Retail, Construction, Manufacturing |
| Manufacturing | Manufacturing, Wholesale, Service |
| Empty | Retail, Construction, Wholesale, Manufacturing, Agriculture |

The trip rates are computed as a ratio of the number of expanded truck trips from the IMTC survey to the total combination of employment as shown in Table 5.1. These trip rates are calculated separately by season, commodity, and districts.

For instance, trucks carrying 'other' commodity were found to be generated by wholesale, construction, agriculture, and manufacturing jobs. Hence, the trip rate for this category is computed as:
'Other’ Truck Trip Rate $=$ [Number of Expanded 'Other’ Truck Trips / Number of (Wholesale + Construction + Agriculture + Manufacturing) Jobs]

Figures 5.5 through 5.10 present production truck trip rates by commodity, season, day of week and districts. Tabular presentation of both the production and consumption trip rates is provided in Appendix B for reference.

Figure 5.5 Freight Trip Generation for Farm Commodities by Day of Week and Season

Truck Trip Production Rates Per Employee


Figure 5.6 Freight Trip Generation for Food Commodities by Day of Week and Season

Truck Trip Production Rates Per Employee


Fall Weekday $\square$ Summer Weekday $\square$ Fall Weekend $\square$ Summer Weekend
Figure 5.7 Freight Trip Generation for Wood Commodities by Day of Week and Season

Truck Trip Production Rates Per Employee


District
Fall Weekday $\square$ Summer Weekday $\square$ Fall Weekend Summer Weekend

Figure 5.8 Freight Trip Generation for Manufacturing Commodities by Day of Week and Season

Truck Trip Production Rates Per Employee


DistrictFall Weekend $\square$ Summer Weekend

Figure 5.9 Freight Trip Generation for Empty Trucks by Day of Week and Season


Fall Weekday Summer WeekdayFall Weekend Summer Weekend

Figure 5.10 Freight Trip Generation for Bulk-Printed-Other Commodities by Day of Week and Season

Truck Trip Production Rates Per Employee


### 5.3 Freight Trip Distribution

## Origin Choice Models

In order to compute the relative shares of truck trips by commodity originating from each TAZ, choice models were specified in a multinomial logit (MNL) framework. All TAZs that had truck origins in the survey database formed the choice set, that is, each origin TAZ is treated as an alternative. For estimation purposes, owing to lack of variation among adjacent districts, the 13 districts were aggregated to seven districts - four in GVRD and one each in Whatcom, Skagit and Puget Sound region. The alternative specific constants were estimated with respect to the Puget Sound district. As there were no observations in the Skagit County, the Puget Sound utility equation was used to compute Skagit county share of trucks. Different origin choice models were estimated for different commodity groups.

The variables that were found to be significant in generating truck trip origins are as follows:

- Retail employment - The number of retail jobs was found to be significant, influencing the origins of truck trips carrying food and wood as well as empty trucks.
- Manufacturing employment - As expected this variable was very significant in the generation of truck trips pertaining to the manufacturing and wood industry. This was also strong in the case of trucks that were empty and carrying 'other' commodity which comprises of bulk, printed matter and unknown commodities.
- Manufacturing employment in Puget Sound - This variable is specific to the manufacturing industry in the four-county Puget Sound. This is estimated separately from the previous variable to get a sense of the relative explanatory power of manufacturing jobs in this region when compared against the rest of the study area. This was included in only the manufacturing origin choice models.
- Wholesale employment - The wholesale jobs seem to significantly generate truck trips pertaining to manufacturing, food, and other industries. As a result it also drives up the amount of empty trucks, probably due to the return trips.
- Construction employment - This employment entered into wood, other, and empty truck origin choice models. Trucks carrying wood and other commodities that include lumber products and which are used in construction are obviously influenced by construction jobs.
- Agriculture/Farming/Fishing employment - As expected, this variable significantly influences trucks related to food and farming industry. This employment was also strong in other and empty truck origin choice models.
- Population - The population of a TAZ is a direct cause for truck trip generation of all types except farming and other commodity groups. The probable reason for this is that farm truck trips are directly proportional to farming and agriculture land rather than population.
- Travel time from origin TAZ to border-crossing location - This variable measures the impedance of truck flows across the border, and as expected, has a negative sign and is significant in all the truck origin choice models.
It was found that these variables were very consistent in terms of influencing truck trip generation across fall weekday and summer weekday. However, these origin choice models were not estimated for the weekends due to the lack of enough sample sizes by commodity type from the IMTC survey database. So it was safe to adopt the respective weekday models for the fall and summer weekends. The estimation results by commodity and season are presented in Tables 5.2 and 5.3.

Table 5.2 Freight Origin Choice Models - Fall (Weekday and Weekend)

| Variable | Manufacturing |  | Food |  | Wood |  | Empty |  | Farm |  | Other |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate | T-stat |
| GVRD1 (<40) | 9.5769 | 6.42 | -1.4449 | -5.16 | -0.1794 | -0.54 | -2.9727 | -22.40 | 2.5382 | 3.54 | -1.7360 | -7.99 |
| WCNT (201-233) | 9.4007 | 6.32 | 2.1279 | 3.27 | 0.7192 | 2.17 | 0.7312 | 3.44 | 4.0978 | 3.90 | 2.2506 | 3.25 |
| GVRD2 (40-102) | 9.5831 | 6.45 | 3.5725 | 6.21 | 0.9214 | 3.09 | -1.5356 | -13.11 | 2.3579 | 3.45 | 0.3263 | 0.83 |
| GVRD3 (25) | 9.4713 | 6.24 |  |  | -0.4216 | -0.82 | -3.2282 | -11.34 | 1.9716 | 2.42 | -2.0192 | $-5.45$ |
| GVRD4 (76) | 10.2518 | 6.92 |  |  | 1.8783 | 5.62 | -2.7452 | -12.13 | 5.0563 | 4.89 | 3.3819 | 4.23 |
| Retail employment |  |  | 0.0011 | 8.67 | 0.0004 | 3.92 | -0.0001 | -0.44 |  |  |  |  |
| Manufacturing employment | 0.0003 | 3.20 |  |  | 0.0003 | 5.52 | 0.0019 | 3.97 |  |  | 0.0044 | 4.38 |
| Wholesale employment | 0.0006 | 5.02 | 0.0011 | 2.24 |  |  | 0.0042 | 4.22 |  |  | 0.0005 | 0.54 |
| Population | 0.00076 | 8.78 | 0.000043 | 2.69 | 0.000138 | 7.06 | 0.000049 | 3.69 |  |  |  |  |
| Construction employment |  |  |  |  | 0.0005 | 3.82 | 0.0007 | 5.39 |  |  | 0.0014 | 2.82 |
| Agriculture/farm/fishing employment |  |  | 0.0002 | 1.45 |  |  | 0.0049 | 10.88 | 0.0035 | 4.25 | 0.0010 | 1.44 |
| Travel time from origin TAZ to border-crossing location | -0.0119 | -2.52 | -0.1114 | -6.40 | -0.0159 | $-2.65$ | -0.0431 | -4.44 | -0.0831 | -3.91 | -0.0366 | $-1.30$ |
| Manufacturing employment in the Puget Sound region | 0.0027 | 8.69 |  |  |  |  |  |  |  |  |  |  |
| Model Statistics |  |  |  |  |  |  |  |  |  |  |  |  |
| Final Likelihood | -2125.05 |  | -228.03 |  | -1104.15 |  | -1255.81 |  | -126.90 |  | -1731.41 |  |
| Rho-Squared (0) | 0.2687 |  | 0.5042 |  | 0.1483 |  | 0.4669 |  | 0.2389 |  | 0.2117 |  |
| Rho-Squared (c) | 0.0926 |  | 0.4246 |  | 0.0095 |  | 0.2172 |  | 0.2027 |  | 0.0438 |  |

Table 5.3 Freight Origin Choice Models - Summer (Weekday and Weekend)

| Variable | Manufacturing |  | Food |  | Wood |  | Empty |  | Farm |  | Other |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate | T-stat |
| GVRD1 (< 40) | 6.2513 | 8.37 | -0.0057 | -0.02 | -0.0665 | -0.35 | -2.1128 | -23.97 | -0.5856 | -0.80 | 3.3244 | 8.29 |
| WCNT (201-233) | 5.9277 | 7.91 | 3.9108 | 6.54 | 1.6608 | 5.84 | -0.2684 | -1.89 |  |  |  |  |
| GVRD2 (40-102) | 6.7068 | 9.01 | 3.7149 | 7.10 | 0.7651 | 4.09 | -0.6090 | -5.70 | 1.6338 | 3.49 | 3.0516 | 7.75 |
| GVRD3 (25) | 5.9644 | 7.92 |  |  | -0.3986 | -1.55 | -2.5409 | -16.12 |  |  |  |  |
| GVRD4 (76) | 7.7975 | 10.35 |  |  | 2.6687 | 11.17 | 1.1273 | 6.02 | 0.4116 | 0.73 | 3.5906 | 7.50 |
| Retail employment |  |  | 0.0005 | 5.54 | 0.0024 | 8.47 | 0.0008 | 12.88 |  |  |  |  |
| Manufacturing employment | 0.0004 | 3.67 |  |  | 0.0022 | 12.80 | 0.0006 | 4.35 |  |  | 0.0018 | 1.78 |
| Wholesale employment | 0.0010 | 7.83 | 0.0026 | 4.19 |  |  | 0.0006 | 2.60 |  |  | 0.0033 | 4.04 |
| Population | 0.000070 | 11.32 | 0.000042 | 3.65 | 0.000088 | 5.37 | 0.000015 | 5.32 |  |  |  |  |
| Construction employment |  |  |  |  | 0.0013 | 3.79 | 0.0008 | 11.32 |  |  | 0.0019 | 4.73 |
| Agriculture/Farm/Fishing employment |  |  | 0.0022 | 8.11 |  |  | 0.0024 | 12.33 | 0.0045 | 3.73 | 0.0017 | 5.23 |
| Travel time from Origin TAZ to border-crossing location | -0.0279 | -7.13 | -0.0417 | -5.92 | -0.1049 | -15.26 | -0.0150 | -4.29 | -0.0348 | -3.28 | -0.0665 | -11.04 |
| Manufacturing employment in the Puget Sound region | 0.0019 | 11.27 |  |  |  |  |  |  |  |  |  |  |
| Model Statistics |  |  |  |  |  |  |  |  |  |  |  |  |
| Final Likelihood | -2375.79 |  | -520.95 |  | -1553.53 |  | -2825.77 |  | -109.88 |  | -399.38 |  |
| Rho-Squared (0) | 0.3468 |  | 0.2226 |  | 0.2975 |  | 0.4089 |  | 0.2065 |  | 0.4595 |  |
| Rho-Squared (c) | 0.1905 |  | 0.1928 |  | 0.1773 |  | 0.1621 |  | 0.0762 |  | 0.3662 |  |

Though the estimation was at the seven-district level, the computation of shares was at the 13 -district level. The truck productions by commodity and TAZ computed by the production model was used as a control total to estimate truck trip origins based on the relative shares derived from the origin choice models. The estimated truck trip origins are then compared against the IMTC survey database for every commodity and season as a model validation criterion. These model validation results are presented in Chapter 7.

## Destination Choice

Destination choice models perform the same general function that trip distribution models, such as the gravity model, do in the traditional four-step modeling process. The estimation of these models is very similar to origin choice models where all destination TAZs form the choice set and are specified as alternatives. Since this is based on a border-crossing choice sample, the intracountry utilities such as Canada-to-Canada and U.S.-to-U.S. are zeroed out, and the utilities are computed at the O-D level. Thus the destination choice shares are also the O-D level. Trip attractions by commodity and district from the attraction model are used here as control totals to estimate the O-D truck trip tables at the TAZ level. So the destination choice models determine not only the trip interchanges but also the total attractions for each zone.
The variables that were found to be significant in attracting truck trip destinations are as follows:

- Retail employment - The number of retail jobs was found to be significant in all of the six destination choice models, indicating the importance of retail industry in attracting truck flows.
- Manufacturing employment - As expected this variable was very significant in the generation of truck trips pertaining to the manufacturing industry. This was also strong in the case of truck movements that were empty.
- Manufacturing employment in Puget Sound - This variable is specific to the manufacturing industry in the four-county Puget Sound. Just like in the origin choice models, this is estimated separately from the rest of the manufacturing jobs, and was included in only the manufacturing destination choice models.
- Wholesale employment - The wholesale jobs, like the retail industry, seem to be significantly attracting all kinds of truck trips pertaining to every industry.
- Construction employment - This employment entered into wood and empty truck destination choice models. Trucks carrying wood are generally used for construction purposes and hence are obviously influenced by construction jobs.
- Agriculture/Farming/Fishing employment - This variable was found to be significant only for empty trucks because TAZs with agriculture and farming land usually tend to produce, and not attract, trucks carrying food and farm products.
- Service employment - The presence of service jobs, which include finance, insurance, and real estate, attracts the food industry and hence truck flows carrying food are affected positively by service employment.
- Population - The population of a TAZ is a direct cause for truck trip production and attraction of all types.
- Travel time from origin TAZ to destination TAZ - This variable measures the impedance of truck flows crossing the border, and as expected, has a negative sign and is significant in all the truck destination choice models.

Similar to origin choice models, it was found that these variables were also consistent in influencing truck trip attractions for fall weekday and summer weekday. So it was safe to adopt the respective weekday models for the fall and summer weekends. The estimation results by commodity and season are presented in Tables 5.4 and 5.5.

Though the estimation was at the seven-district level, the computation of shares was at the 13 -district level. The truck attractions by commodity and TAZ computed by the attraction model was used as a control total to estimate truck trip O-D tables based on the relative shares derived from the destination choice models. The total truck trips are then compared against the IMTC survey database for every commodity and season as a model validation criterion. The district-to-district ( $13 \times 13$ ) truck trip flows are also extracted from the model and compared against the expanded truck flows from the survey. These model validation results are presented in Chapter 7.

### 5.4 TIME OF DAY

In order to better represent the temporal characteristics of freight flows across the U.S./ Canada border, the time at which the truck was intercepted at the bordercrossing location was also collected as part of the IMTC truck survey. This survey time served as a way to develop peaking factors or time-of-day factors that were used to split the daily truck trip tables into three time periods: a.m. peak (8 a.m. to 11 a.m.), p.m. peak ( 2 p.m. to 5 p.m.) and off-peak (remainder hours). These factors were derived from the expanded truck trip database for each of the four seasons as shown in Table 5.6.

Table 5.4 Freight Destination Choice Models - Fall (Weekday and Weekend)

| Variable | Manufacturing |  | Food |  | Wood |  | Empty |  | Farm |  | Other |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate | T-stat |
| GVRD1 (< 40) | -0.9494 | -3.97 | -0.5433 | -1.55 | -2.3988 | -9.49 | -0.1158 | -0.59 | -1.2191 | -2.39 | 1.0217 | 3.82 |
| WCNT (201-233) | -0.8033 | -6.80 | -0.1347 | -0.32 | -0.8489 | -5.23 | 0.6253 | 2.41 | -0.2846 | -0.99 | 3.1899 | 7.64 |
| GVRD2 (40-102) | -1.4771 | -6.37 | -0.2921 | -0.76 | -2.6219 | -10.42 | 0.7617 | 3.81 | -1.1253 | -1.99 | 2.2289 | 6.25 |
| GVRD3 (25) | -0.4002 | -2.47 | -0.4078 | -0.74 | -3.3838 | -4.42 | -0.8857 | -4.12 |  |  |  |  |
| GVRD4 (76) | -0.5246 | -2.94 | 0.8175 | 1.70 | -4.4874 | -4.45 | 2.9427 | 10.14 |  |  |  |  |
| Retail employment | 0.4565 | 1.47 | 0.0002 | 2.73 | 0.0003 | 2.90 | 0.0003 | 2.55 | 0.0006 | 1.67 | 0.0003 | 4.68 |
| Manufacturing employment | 1.8929 | 5.80 |  |  |  |  | 0.0008 | 4.43 |  |  |  |  |
| Wholesale employment | 3.9253 | 12.44 | 0.0005 | 2.00 | 0.0004 | 0.68 | 0.0017 | 5.76 | 0.0061 | 1.88 | 0.0028 | 7.19 |
| Population |  |  | 0.000012 | 3.29 | 0.000006 | 1.81 | 0.000043 | 3.84 | 0.000012 | 1.73 | 0.000020 | 3.49 |
| Construction employment |  |  |  |  | 0.0021 | 3.26 | 0.0007 | 6.16 |  |  |  |  |
| Agriculture/Farming/ Fishing employment |  |  |  |  |  |  | 0.0006 | 4.68 |  |  |  |  |
| Travel time of trip from origin TAZ to destination TAZ | -0.0069 | -2.97 | -0.0078 | -2.64 | -0.0375 | -6.15 | -0.0078 | -4.53 | -0.0208 | -2.31 | -0.0171 | $-7.16$ |
| Manufacturing employment in Puget Sound region | 4.5107 | 15.25 |  |  |  |  |  |  |  |  |  |  |
| Services Employment |  |  | 0.0003 | 3.10 |  |  |  |  |  |  |  |  |
| Model Statistics |  |  |  |  |  |  |  |  |  |  |  |  |
| Final Likelihood | -2067.13 |  | -374.86 |  | -519.65 |  | -1803.52 |  | -107.99 |  | -472.05 |  |
| Rho-Squared (0) | 0.2475 |  | 0.2245 |  | 0.2973 |  | 0.2064 |  | 0.2935 |  | 0.2237 |  |
| Rho-Squared (c) | 0.0672 |  | 0.0790 |  | 0.0591 |  | 0.0048 |  | 0.1596 |  | 0.1136 |  |

Table 5.5 Freight Destination Choice Models - Summer (Weekday and Weekend)

| Variable | Manufacturing |  | Food |  | Wood |  | Empty |  | Farm |  | Other |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate | T-stat |
| GVRD1 (<40) | -1.0511 | -8.70 | 1.7928 | 5.27 | -0.5578 | -2.67 | 6.4464 | 8.31 | -0.0545 | -0.14 | 2.4179 | 7.90 |
| WCNT (201-233) | 0.6010 | 4.29 | 3.1739 | 6.22 | 0.7391 | 4.12 | 7.0387 | 9.01 | -0.3789 | -1.43 | 4.1462 | 9.80 |
| GVRD2 (40-102) | -0.8355 | -7.22 | 5.9929 | 10.02 | -1.1539 | -6.75 | 6.9388 | 8.96 | -0.3947 | -0.76 | 2.6975 | 8.36 |
| GVRD3 (25) | -0.0002 | 0.00 |  |  |  |  | 5.3671 | 6.72 |  |  |  |  |
| GVRD4 (76) |  |  | 4.3842 | 5.59 |  |  | 7.4631 | 9.40 |  |  |  |  |
| Retail employment |  |  | 0.0017 | 5.12 | 0.0005 | 4.48 | 0.0000 | 1.72 | 0.0001 | 1.95 | 0.0004 | 6.13 |
| Manufacturing employment | 0.0010 | 9.17 |  |  |  |  | 0.0009 | 20.77 |  |  |  |  |
| Wholesale employment | 0.0009 | 6.77 | 0.0013 | 4.63 | 0.0027 | 8.36 | 0.0001 | 3.19 | 0.0015 | 1.68 | 0.0015 | 5.68 |
| Population | 0.000011 | 6.58 | 0.000019 | 5.59 | 0.000010 | 4.25 | 0.000029 | 8.74 | 0.000013 | 2.26 | 0.000021 | 3.80 |
| Construction employment |  |  |  |  | 0.0009 | 3.37 | 0.0002 | 7.34 |  |  |  |  |
| Agriculture/Farming/Fishing employment |  |  |  |  |  |  | 0.0007 | 6.02 |  |  |  |  |
| Travel time of trip from origin TAZ to destination TAZ | -0.0049 | $-3.25$ | -0.0328 | -6.68 | -0.0190 | -6.90 | -0.0265 | -3.51 | -0.0090 | -1.09 | -0.0402 | -12.54 |
| Manufacturing employment in the Puget Sound region | 0.0010 | 8.84 |  |  |  |  |  |  |  |  |  |  |
| Services Employment |  |  | 0.0002 | 3.00 |  |  |  |  |  |  |  |  |
| Model Statistics |  |  |  |  |  |  |  |  |  |  |  |  |
| Final Likelihood | -2161.92 |  | -404.37 |  | -1167.42 |  | -3806.84 |  | -192.70 |  | -534.83 |  |
| Rho-Squared (0) | 0.2125 |  | 0.3478 |  | 0.2178 |  | 0.1845 |  | 0.1962 |  | 0.3582 |  |
| Rho-Squared (c) | 0.0525 |  | 0.1895 |  | 0.0410 |  | 0.0740 |  | 0.0540 |  | 0.2716 |  |

Table 5.6 Truck Time-of-Day Factors by Season

| Time-of-Day | Summer <br> Weekday | Summer <br> Weekend | Fall <br> Weekday | Fall <br> Weekend |
| :--- | :---: | :---: | :---: | :---: |
| AM (8AM-11AM) | 0.171 | 0.168 | 0.158 | 0.155 |
| PM (2PM-5PM) | 0.169 | 0.178 | 0.177 | 0.166 |
| OP (remainder) | 0.660 | 0.654 | 0.665 | 0.679 |

These factors are derived only for the internal-internal trips (internal to the study area) while the external trips namely external-internal, internal-external and external-external are obtained by time period directly from the expanded survey, and added to the internal trips before trip assignment. The time-of-day factors are also graphically presented in Figure 5.11.

Figure 5.11 Truck Time-of-Day Factors by Season


### 5.5 Border Crossing Choice

Out of the four border-crossing locations at the U.S./Canada border, truck traffic is allowed through only three of these locations: Pacific Highway, Lynden, and Sumas. The choice among these three locations is made by the decision-maker or truck driver based on a variety of reasons such as travel time or distance of the whole trip, waiting time and/or queue lengths at the border-crossing, hours of operation of location, daily trade flows across the border, location of paper work,
presence of customs broker, number of crossings across the border per day, etc. The probability of a trip maker choosing a border-crossing location can be expressed as a function of the utility of that location versus the aggregate utility of all available crossing locations. This can be best captured in a multinomial logit formulation.
The variables that were found to be significant in influencing the border-crossing choice are listed below:

- Travel time of border-crossing trip - This variable has a negative sign as expected because it measures the impedance of making a trip across the border through on of the three border-crossing ports.
- Travel distance of border-crossing trip - This variable was used as a proxy to travel time specific to crossing at Lynden and is found to be negative and significant.
- Wait time at border-crossing location - This variable was found to be negative and very significant in influencing a decision-maker's choice of border-crossing location. This time indicates the amount of average time the trip maker has to spend at the port of entry. This was derived from a survey of trip makers across the border by crossing location, direction, time of day and season and are reported in Tables 3.8 and 3.9 for southbound and northbound trips, respectively.
- Trade flows - The trade flow through the port per day in U.S. dollars is found to be positively and significantly influencing the border-crossing choice.

These models are estimated separately for each of the four seasons, and the estimation results are presented in Tables 5.7 through 5.10.

Table 5.7 Border-Crossing Choice Models - Fall Weekday

| Variable | AM Peak |  | PM Peak |  | Off Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate | T-stat | Estimate | T-stat | Estimate | T-stat |
| Lynden/Aldergrove | 4.2225 | -1.12 | 1.1079 | -2.06 | 1.9556 | -1.92 |
| Sumas/Abbotsford | 3.7441 | -2.37 | 0.6618 | -6.29 | 0.8559 | -5.96 |
| Travel time (minutes) | -0.0177 | -0.79 | -0.0392 | -1.44 | -0.0071 | -0.26 |
| Travel distance (miles) | -0.0301 | -1.37 | -0.0555 | -2.04 | -0.0216 | -0.78 |
| Wait Time (minutes) | -0.000030 | -0.07 | -0.001249 | -3.20 | -0.000508 | -2.02 |
| Daily Trade (USD) | 0.00000129 | 2.81 | 0.00000050 | 1.42 | 0.00000069 | 3.17 |
| Model Statistics |  |  |  |  |  |  |
| Final Likelihood | -189.3511 |  | -191.6871 |  | -407.3881 |  |
| Rho-Squared (0) | 0.2420 |  | 0.2504 |  | 0.4639 |  |
| Rho-Squared (c) | 0.0649 |  | 0.0847 |  | 0.0484 |  |

Table 5.8 Border-Crossing Choice Models - Fall Weekend

| Variable | AM Peak |  | PM Peak |  | Off Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate | T-stat | Estimate | T-stat | Estimate | T-stat |
| Lynden/Aldergrove | 4.2225 | -1.12 | 1.1079 | -2.06 | -1.9556 | -1.92 |
| Sumas/Abbotsford | -3.7441 | -2.37 | -0.6618 | -6.29 | -4.8559 | -5.96 |
| Travel time (minutes) | -0.0177 | -0.79 | -0.0392 | -1.44 | -0.0071 | -0.26 |
| Travel distance (miles) | -0.0301 | -1.37 | -0.0555 | -2.04 | -0.0216 | -0.78 |
| Wait Time (minutes) | -0.000030 | -0.07 | -0.001249 | -3.20 | -0.000508 | -2.02 |
| Daily Trade (USD) | 0.00000129 | 2.81 | 0.00000050 | 1.42 | 0.00000069 | 3.17 |
| Model Statistics |  |  |  |  |  |  |
| Final Likelihood | -189.3511 |  | -191.6871 |  | -407.3881 |  |
| Rho-Squared (0) | 0.2420 |  | 0.2504 |  | 0.4639 |  |
| Rho-Squared (c) | 0.0649 |  | 0.0847 |  | 0.0484 |  |

Table $5.9 \quad$ Border-Crossing Choice Models - Summer Weekday

| Variable | AM Peak |  | PM Peak |  | Off Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate | T-stat | Estimate | T-stat | Estimate | T-stat |
| Lynden/Aldergrove | 0.7126 | -0.8 | 3.850 | -1.4 | 4.3322 | -7.7 |
| Sumas/Abbotsford | 1.4781 | -2.1 | 4.497 | -1.0 | 4.9291 | -3.4 |
| Travel time (minutes) | -0.001172 | -2.5 | -0.002491 | -5.4 | -0.001032 | -4.8 |
| Wait Time (minutes) | -0.01856 | -3.6 | -0.01895 | -5.8 | -0.00817 | -4.4 |
| Daily Trade (USD) | 0.0000007564 | 2.3 | 0.000001731 | 3.9 | 0.000002013 | 6.2 |
| Model Statistics |  |  |  |  |  |  |
| Final Likelihood | -166.4239 |  | -165.4178 |  | -523.8275 |  |
| Rho-Squared (0) | 0.3930 |  | 0.4387 |  | 0.4513 |  |
| Rho-Squared (c) | 0.0885 |  | 0.2054 |  | 0.1037 |  |

Table 5.10 Border-Crossing Choice Models - Summer Weekend

| Variable | AM Peak |  | PM Peak |  | Off Peak |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Estimate | T-stat | Estimate | T-stat | Estimate | T-stat |
| Pacific Highway |  |  | -0.194 | -1.6 | 0.177 | 1.5 |
| Lynden/Aldergrove | -6.0321 | -3.3 | 5.003 | -4.8 | 6.298 | -6.0 |
| Sumas/Abbotsford | 5.1802 | -0.5 |  |  |  |  |
| Travel time (minutes) | -0.002375 | -4.9 | -0.000814 | -2.2 | -0.000939 | -4.3 |
| Travel distance (miles) | -0.03991 | -5.7 | -0.03882 | -5.7 | -0.01229 | -3.1 |
| Wait Time (minutes) | -0.005091 | -1.2 | -0.00591 | -1.4 | -0.002852 | -1.1 |
| Daily Trade (USD) | 0.000001912 | 3.6 | 0.000001417 | 3.5 | 0.000002056 | 6.2 |
| Model Statistics |  |  |  |  |  |  |
| Final Likelihood | -157.0959 |  | -168.2931 |  | -518.8143 |  |
| Rho-Squared (0) | 0.4669 |  | 0.4289 |  | 0.4565 |  |
| Rho-Squared (c) | 0.2454 |  | 0.1916 |  | 0.1123 |  |

### 6.0 Trip Assignment

Route assignment is the final stage of the Cascade Gateway model. Bordercrossing trip matrices by time of day, direction, and port-of-entry, which are generated in the border choice model, are assigned to the road network to determine the actual route taken by cross-border trips. This section describes trip assignment procedures and possible directions for integrating the Cascade Gateway travel demand model with future operations models.

### 6.1 Route Choice

EMME/2 provides several options for equilibrium assignment. The main inputs to this stage are the border-crossing trip matrices by port-of-entry and the road network. The simple form is the single-class assignment which involves a single auto matrix. In the Cascade Gateway model, multi-class assignment was used for both the passenger car and truck models. The concept of route assignment is that each port-of-entry is treated as a type of travel mode resulting in a total of four travel modes for passenger car models (Peace Arch, Pacific Highway, Lynden, and Sumas) and three travel modes for truck models (Pacific Highway, Lynden, and Sumas). Border-crossing trip matrices by port-of-entry are then assigned to the road network in sequence.

### 6.2 Integration with Operations Model

Estimated border wait times derived from an operations model will be provided as an input into the Cascade Gateway Travel Demand Model. Subsequently, new travel demand for each border crossing will be re-generated based upon the revised border wait time, and will be fed back into the operations model. This cycle will be replicated until equilibrium is achieved. Figure 6-1 illustrates the preliminary structure of the integration of the Cascade Gateway travel demand models with an operations model.

Figure 6-1 Integration with Operations Model


### 7.0 Model Validation

### 7.1 VALIDATION DATA

## Passenger Model

A key element of the model development and calibration is to ensure that appropriate data sources are accessible. The following lists all the data that was used for the calibration and validation of the passenger car model:

- IMTC Origin-Destination Survey;
- INS Travel Time Data for Passenger Vehicle (southbound) for Year 2000 and 2001; and
- CCRA Pacific Border Wait Time Archives for Year 2002.

From the IMTC OD survey database, auto traffic counts were compiled for the four border crossings by direction, time period and season. Table 7.1 shows the traffic counts by port-of-entry, direction, day of week and time of day.

## Freight Model

The purpose of the freight model validation is to compare the performance of the model components to the observed data available. The IMTC cross-border truck and trade survey and traffic counts were the only observed data available to validate the freight model components. The ensuing section includes a discussion of the 'fall-weekday' freight model validation results that were derived from trip generation, destination choice, border-crossing choice, and truck trip assignment model.
From the IMTC OD survey database, truck traffic counts were compiled for the four border crossings by direction, time period and season. Table 7.2 shows the traffic counts by port-of-entry, direction, day of week and time of day.

### 7.2 Model Validation Results

## Passenger Model

Validation is the comparison of model results against observed data. Validation is essential to ensure that all sub-components operate properly. This section shows the model validation results for the four passenger models.

Table 7.1 Auto Traffic Counts by Day of Week, Direction, Time of Day, and Port-of-Entry (Summer and Fall)

| Day of week | Direction | US/Canada Border Crossings |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Time of day | Peace Arch | Pac Hwy | Lynden/ Aldergrove | Sumas/ Abbotsford | Total |
| Summer Weekend | Northbound | AM Peak | 844 | 381 | 365 | 366 | 1,956 |
|  |  | PM Peak | 1,539 | 1,244 | 632 | 813 | 4,228 |
|  |  | Off Peak | 4,361 | 2,928 | 1,966 | 2,015 | 11,270 |
|  |  | Daily | 6,744 | 4,553 | 2,963 | 3,194 | 17,454 |
|  |  | AM Peak | 1,407 | 1,009 | 603 | 592 | 3,611 |
|  | Southbound | PM Peak | 1,335 | 1,015 | 861 | 931 | 4,142 |
|  |  | Off Peak | 4,875 | 3,480 | 1,889 | 2,047 | 12,291 |
|  | Subtotal | Daily | 7,617 | 5,504 | 3,353 | 3,570 | 20,044 |
|  |  | Daily | 14,361 | 10,057 | 6,316 | 6,764 | 37,498 |
| Summer <br> Weekday |  | AM Peak | 1,036 | 507 | 158 | 314 | 2,015 |
|  | Northbound | PM Peak | 1,308 | 821 | 447 | 591 | 3,167 |
|  |  | Off Peak | 3,605 | 2,265 | 1,470 | 1,584 | 8,924 |
|  | Southbound | Daily | 5,949 | 3,593 | 2,075 | 2,489 | 14,106 |
|  |  | AM Peak | 1,375 | 810 | 504 | 566 | 3,255 |
|  |  | PM Peak | 1,291 | 922 | 466 | 690 | 3,369 |
|  |  | Off Peak | 4,055 | 2,613 | 1,382 | 1,529 | 9,579 |
|  | Subtotal | Daily | 6,721 | 4,345 | 2,352 | 2,785 | 16,203 |
|  |  | Daily | 12,670 | 7,938 | 4,427 | 5,274 | 30,309 |
| Fall Weekend |  | AM Peak | 725 | 425 | 198 | 193 | 1,541 |
|  | Northbound | PM Peak | 1,243 | 847 | 519 | 567 | 3,176 |
|  |  | Off Peak | 3,223 | 1,887 | 1,127 | 1,252 | 7,489 |
|  |  | Daily | 5,191 | 3,159 | 1,844 | 2,012 | 12,206 |
|  | Southbound | AM Peak | 1,069 | 666 | 293 | 314 | 2,342 |
|  |  | PM Peak | 1,338 | 757 | 552 | 591 | 3,238 |
|  |  | Off Peak | 3,799 | 1,988 | 1,185 | 1,347 | 8,319 |
|  | Subtotal | Daily | 6,206 | 3,411 | 2,030 | 2,252 | 13,899 |
|  |  | Daily | 11,397 | 6,570 | 3,874 | 4,264 | 26,105 |
| Fall Weekday |  | AM Peak | 562 | 305 | 125 | 181 | 1,173 |
|  | Northbound | PM Peak | 977 | 506 | 322 | 382 | 2,187 |
|  |  | Off Peak | 2,334 | 1,190 | 707 | 879 | 5,110 |
|  |  | Daily | 3,873 | 2,001 | 1,154 | 1,442 | 8,470 |
|  | Southbound | AM Peak | 1,033 | 726 | 183 | 250 | 2,192 |
|  |  | PM Peak | 975 | 597 | 265 | 392 | 2,229 |
|  |  | Off Peak | 2,640 | 1,465 | 688 | 1,023 | 5,816 |
|  | Subtotal | Daily | 4,648 | 2,788 | 1,136 | 1,665 | 10,237 |
|  |  | Daily | 8,521 | 4,789 | 2,290 | 3,107 | 18,707 |

Table 7.2 Truck Traffic Counts by Day of Week, Direction, Time of Day, and Port-of-Entry (Summer and Fall)

| Day of week | Direction | US/Canada Border Crossings |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Time of day | Pac Hwy | Lynden/ Aldergrove (1) | Sumas/ Abbotsford | Total |
| Summer Weekend | Northbound | AM Peak | 119 | 13 | 11 | 143 |
|  |  | PM Peak | 171 | 9 | 11 | 191 |
|  |  | Off Peak | 550 | 32 | 37 | 619 |
|  |  | Daily | 840 | 54 | 59 | 953 |
|  |  | AM Peak | 175 | 14 | 23 | 212 |
|  | Southbound | PM Peak | 150 | 9 | 26 | 185 |
|  |  | Off Peak | 644 | 35 | 81 | 760 |
| Summer <br> Weekday | Subtotal | Daily | 969 | 58 | 130 | 1,157 |
|  |  | Daily | 1,809 | 112 | 189 | 2,110 |
|  | Northbound | AM Peak | 235 | 29 | 43 | 307 |
|  |  | PM Peak | 283 | 38 | 41 | 362 |
|  |  | Off Peak | 1,076 | 109 | 123 | 1,308 |
|  |  | Daily | 1,594 | 176 | 207 | 1,977 |
|  | Southbound | AM Peak | 316 | 49 | 92 | 457 |
|  |  | PM Peak | 263 | 38 | 92 | 393 |
|  |  | Off Peak | 1,264 | 103 | 268 | 1,635 |
|  | Subtotal | Daily | 1,843 | 190 | 452 | 2,485 |
|  |  | Daily | 3,437 | 366 | 659 | 4,462 |
| Fall Weekend |  | AM Peak | 88 | 13 | 11 | 112 |
|  | Northbound | PM Peak | 127 | 9 | 11 | 147 |
|  |  | Off Peak | 489 | 32 | 37 | 558 |
|  | Southbound | Daily | 703 | 54 | 59 | 816 |
|  |  | AM Peak | 131 | 14 | 23 | 168 |
|  |  | PM Peak | 118 | 9 | 26 | 153 |
|  |  | Off Peak | 551 | 35 | 81 | 667 |
|  | Subtotal | Daily | 801 | 58 | 130 | 989 |
|  |  | Daily | 1,504 | 112 | 189 | 1,805 |
| Northbound |  | AM Peak | 196 | 35 | 36 | 267 |
|  |  |  |  | PM Peak | 284 | 81 | 40 | 406 |
|  |  |  | Off Peak | 1,037 | 144 | 95 | 1,276 |
| Fall Weekday | Southbound | Daily | 1,517 | 260 | 172 | 1,949 |
|  |  | AM Peak | 248 | 64 | 87 | 399 |
|  |  | PM Peak | 237 | 69 | 94 | 400 |
|  |  | Off Peak | 1,158 | 162 | 249 | 1,568 |
|  |  | Daily | 1,642 | 295 | 430 | 2,367 |
|  | Subtotal | Daily | 3,159 | 555 | 602 | 4,316 |

(1) Note that Fall Weekend truck counts were not available, so Summer Weekend counts were used.

Tables 7.3 to 7.6 summarize the observed and predicted trip origin and destination totals by trip purpose for the four models. Most of the percentage errors are less than 10 percent, except for a few cases in which the counts are relatively small. For example, an 18 -percent error on a count of 28 passenger cars is less significant than an 18-percent error on a count of 2,800 passenger cars. The observed and predicted OD tables by trip purposes are presented in Appendix A. All four models produce a reasonable fit to the survey data (r-squared values ranged from 0.97 to 1.00 when compared to the observed subarea data). Tables 7.7 to 7.8 show the model results by day of week, direction, time of day and port-of-entry in absolute values and percentage errors. Most of the percentage errors shown in Table 7.8 are well below five percent and the daily cross-border trips match remarkably well with the observed data.

Table 7.3 Trip Origin and Distribution Total by Trip Purposes (Fall Weekday)

Fall Weekday - Work Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 692 | 692 | $0 \%$ |
| Bur, NW, NE, MR | 290 | 273 | $-6 \%$ |
| Surrey, Delta, | 1,341 | 1,364 | $2 \%$ |
| Langley, Fraser V | 174 | 168 | $-3 \%$ |
| Point Roberts | 553 | 557 | $1 \%$ |
| Blaine,Ferndale | 687 | 700 | $2 \%$ |
| Lynden, Sumas | 432 | 411 | $-5 \%$ |
| Bellingham | 300 | 306 | $2 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 437 | 433 | $-1 \%$ |
| Bur, NW, NE, MR | 184 | 170 | $-7 \%$ |
| Surrey, Delta, | 1,307 | 1,328 | $2 \%$ |
| Langley, Fraser V | 44 | 41 | $-6 \%$ |
| Point Roberts | 936 | 946 | $1 \%$ |
| Blaine,Ferndale | 466 | 459 | $-1 \%$ |
| Lynden, Sumas | 525 | 511 | $-3 \%$ |
| Bellingham | 570 | 582 | $2 \%$ |
| Skagit, PSRC |  |  |  |

Fall Weekday - Recreation Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 643 | 658 | $2 \%$ |
| Bur, NW, NE, MR | 427 | 405 | $-5 \%$ |
| Surrey, Delta, |  |  | $0 \%$ |
| Langley, Fraser V | 2,993 | 3,002 | 0 |
| Point Roberts | 51 | 49 | $-2 \%$ |
| Blaine,Ferndale | 907 | 914 | $1 \%$ |
| Lynden, Sumas | 1,162 | 1,164 | $0 \%$ |
| Bellingham | 521 | 520 | $0 \%$ |
| Skagit, PSRC | 495 | 488 | $-1 \%$ |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 639 | 631 | $-1 \%$ |
| Bur, NW, NE, MR | 332 | 328 | $-1 \%$ |
| Surrey, Delta, | 2,090 | 2,103 | $1 \%$ |
| Langley, Fraser V | 24 | 24 | $-1 \%$ |
| Point Roberts | 1,351 | 1,393 | $3 \%$ |
| Blaine,Ferndale | 1,230 | 1,217 | $-1 \%$ |
| Lynden, Sumas | 850 | 845 | $-1 \%$ |
| Bellingham | 682 | 658 | $-4 \%$ |
| Skagit, PSRC |  |  |  |

## Fall Weekday - Shopping Trip

Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 282 | 274 | $-3 \%$ |
| Bur, NW, NE, MR | 110 | 111 | $1 \%$ |
| Surrey, Delta, | 1,581 | 1,588 | $0 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | 768 | 764 | $-1 \%$ |
| Blaine,Ferndale | 490 | 481 | $-2 \%$ |
| Lynden, Sumas | 330 | 330 | $0 \%$ |
| Bellingham | 173 | 185 | $7 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 323 | 337 | $4 \%$ |
| Bur, NW, NE, MR | 151 | 162 | $7 \%$ |
| Surrey, Delta, | 1,258 | 1,240 | $-1 \%$ |
| Langley, Fraser V | 28 | 23 | $-18 \%$ |
| Point Roberts | 886 | 897 | $1 \%$ |
| Blaine,Ferndale | 286 | 298 | $4 \%$ |
| Lynden, Sumas | 735 | 719 | $-2 \%$ |
| Bellingham | 65 | 59 | $-9 \%$ |
| Skagit, PSRC |  |  |  |

Fall Weekday - Vacation Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 121 | 128 | $6 \%$ |
| Bur, NW, NE, MR | 93 | 97 | $5 \%$ |
| Surrey, Delta, | 184 | 173 | $-6 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | 69 | 57 | $-18 \%$ |
| Blaine,Ferndale | 199 | 214 | $7 \%$ |
| Lynden, Sumas | 22 | 24 | $7 \%$ |
| Bellingham | 300 | 296 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 228 | 213 | $-7 \%$ |
| Bur, NW, NE, MR | 86 | 96 | $12 \%$ |
| Surrey, Delta, | 277 | 281 | $2 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | 11 | 13 | $14 \%$ |
| Blaine,Ferndale | 92 | 98 | $7 \%$ |
| Lynden, Sumas | 7 | 7 | $-5 \%$ |
| Bellingham | 289 | 282 | $-2 \%$ |
| Skagit, PSRC |  |  |  |

Table 7-4 Trip Origin and Distribution Total by Trip Purposes (Fall Weekend)

Fall Weekend - Work Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 245 | 234 | $-4 \%$ |
| Bur, NW, NE, MR | 55 | 59 | $9 \%$ |
| Surrey, Delta, | 331 | 337 | $2 \%$ |
| Langley, Fraser V | 10 | 10 | $-4 \%$ |
| Point Roberts | 91 | 95 | $5 \%$ |
| Blaine,Ferndale | 79 | 78 | $-1 \%$ |
| Lynden, Sumas | 130 | 129 | $-1 \%$ |
| Bellingham | 222 | 220 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 137 | 136 | $0 \%$ |
| Bur, NW, NE, MR | 24 | 28 | $16 \%$ |
| Surrey, Delta, | 360 | 357 | $-1 \%$ |
| Langley, Fraser V |  |  | $0 \%$ |
| Point Roberts | - | - | $-2 \%$ |
| Blaine,Ferndale | 262 | 257 | $-4 \%$ |
| Lynden, Sumas | 10 | 10 | $0 \%$ |
| Bellingham | 135 | 134 | $2 \%$ |
| Skagit, PSRC | 234 | 239 |  |

Fall Weekend - Recreation Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 2,160 | 2,130 | $-1 \%$ |
| Bur, NW, NE, MR | 1,000 | 1,066 | $7 \%$ |
| Surrey, Delta, | 3,691 | 3,657 | $-1 \%$ |
| Langley, Fraser V | 105 | 103 | $-2 \%$ |
| Point Roberts | 1,411 | 1,408 | $0 \%$ |
| Blaine,Ferndale | 1,700 | 1,720 | $1 \%$ |
| Lynden, Sumas | 826 | 803 | $-3 \%$ |
| Bellingham | 2,642 | 2,648 | $0 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 2,217 | 2,197 | $-1 \%$ |
| Bur, NW, NE, MR | 732 | 778 | $6 \%$ |
| Surrey, Delta, | 3,597 | 3,573 | $-1 \%$ |
| Langley, Fraser V | 33 | 32 | $-4 \%$ |
| Point Roberts | 1,055 | 1,014 | $-4 \%$ |
| Blaine,Ferndale | 1,914 | 1,930 | $1 \%$ |
| Lynden, Sumas | 1,084 | 1,089 | $1 \%$ |
| Bellingham | 2,904 | 2,921 | $1 \%$ |
| Skagit, PSRC |  |  |  |

Fall Weekend - Shopping Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 1,003 | 1,000 | $0 \%$ |
| Bur, NW, NE, MR | 537 | 541 | $1 \%$ |
| Surrey, Delta, |  |  | $0 \%$ |
| Langley, Fraser V | 2,632 | 2,630 | $0 \%$ |
| Point Roberts | - | 0 | $0 \%$ |
| Blaine,Ferndale | 955 | 953 | $0 \%$ |
| Lynden, Sumas | 515 | 513 | $0 \%$ |
| Bellingham | 936 | 935 | $0 \%$ |
| Skagit, PSRC | 312 | 317 | $2 \%$ |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 847 | 843 | $0 \%$ |
| Bur, NW, NE, MR | 272 | 272 | $0 \%$ |
| Surrey, Delta, | 1,551 | 1,553 | $0 \%$ |
| Langley, Fraser V | 49 | 50 | $2 \%$ |
| Point Roberts | 1,242 | 1,249 | $1 \%$ |
| Blaine,Ferndale | 564 | 572 | $1 \%$ |
| Lynden, Sumas | 1,592 | 1,581 | $-1 \%$ |
| Bellingham | 774 | 770 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Fall Weekend - Vacation Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 106 | 115 | $9 \%$ |
| Bur, NW, NE, MR | 10 | 5 | $-54 \%$ |
| Surrey, Delta, | 185 | 180 | $-2 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | 93 | 92 | $-1 \%$ |
| Blaine,Ferndale | 108 | 114 | $6 \%$ |
| Lynden, Sumas | 25 | 25 | $1 \%$ |
| Bellingham | 357 | 352 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 195 | 192 | $-1 \%$ |
| Bur, NW, NE, MR | 84 | 92 | $9 \%$ |
| Surrey, Delta, | 304 | 300 | $-1 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | - | - | $0 \%$ |
| Blaine,Ferndale | 20 | 26 | $29 \%$ |
| Lynden, Sumas | 19 | 20 | $9 \%$ |
| Bellingham | 262 | 254 | $-3 \%$ |
| Skagit, PSRC |  |  |  |

Table 7-5 Trip Origin and Distribution Total by Trip Purposes (Summer Weekday)

Summer Weekday - Work Trip

| Origin |  |  |  |
| :--- | ---: | ---: | ---: |
| Subarea | Observed | Estimated | \% Diff |
| N/W Van, Van, Rich | 705 | 710 | $1 \%$ |
| Bur, NW, NE, MR | 287 | 288 | $0 \%$ |
| Surrey, Delta, | 1,116 | 1,111 | $0 \%$ |
| Langley, Fraser V | 119 | 117 | $-2 \%$ |
| Point Roberts | 747 | 775 | $4 \%$ |
| Blaine,Ferndale | 694 | 692 | $0 \%$ |
| Lynden, Sumas | 693 | 658 | $-5 \%$ |
| Bellingham | 454 | 463 | $2 \%$ |
| Skagit, PSRC |  |  |  |

Summer Weekday - Recreation Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 1,478 | 1,452 | $-2 \%$ |
| Bur, NW, NE, MR | 731 | 754 | $3 \%$ |
| Surrey, Delta, | 4,401 | 4,407 | $0 \%$ |
| Langley, Fraser V | 48 | 47 | $-2 \%$ |
| Point Roberts | 1,150 | 1,147 | $0 \%$ |
| Blaine,Ferndale | 1,660 | 1,682 | $1 \%$ |
| Lynden, Sumas | 1,039 | 1,010 | $-3 \%$ |
| Bellingham | 919 | 931 | $1 \%$ |
| Skagit, PSRC |  |  |  |

Summer Weekday - Shopping Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 461 | 474 | $3 \%$ |
| Bur, NW, NE, MR | 283 | 284 | $0 \%$ |
| Surrey, Delta, | 1,353 | 1,339 | $-1 \%$ |
| Langley, Fraser V | 42 | 42 | $0 \%$ |
| Point Roberts | 909 | 918 | $1 \%$ |
| Blaine,Ferndale | 532 | 536 | $1 \%$ |
| Lynden, Sumas | 551 | 555 | $1 \%$ |
| Bellingham | 277 | 260 | $-6 \%$ |
| Skagit, PSRC |  |  |  |

Summer Weekday - Vacation Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 677 | 687 | $1 \%$ |
| Bur, NW, NE, MR | 296 | 287 | $-3 \%$ |
| Surrey, Delta, | 661 | 661 | $0 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | 89 | 89 | $0 \%$ |
| Blaine,Ferndale | 485 | 487 | $0 \%$ |
| Lynden, Sumas | 117 | 121 | $4 \%$ |
| Bellingham | 550 | 544 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 503 | 506 | $1 \%$ |
| Bur, NW, NE, MR | 196 | 179 | $-8 \%$ |
| Surrey, Delta, | 1,544 | 1,557 | $1 \%$ |
| Langley, Fraser V | 26 | 27 | $4 \%$ |
| Point Roberts | 664 | 663 | $0 \%$ |
| Blaine,Ferndale | 403 | 414 | $3 \%$ |
| Lynden, Sumas | 912 | 904 | $-1 \%$ |
| Bellingham | 161 | 159 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 766 | 768 | $0 \%$ |
| Bur, NW, NE, MR | 252 | 243 | $-4 \%$ |
| Surrey, Delta, | 1,479 | 1,488 | $1 \%$ |
| Langley, Fraser V | 91 | 89 | $-2 \%$ |
| Point Roberts | 657 | 669 | $2 \%$ |
| Blaine,Ferndale | 370 | 376 | $2 \%$ |
| Lynden, Sumas | 528 | 505 | $-4 \%$ |
| Bellingham | 671 | 677 | $1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 1,128 | 1,151 | $2 \%$ |
| Bur, NW, NE, MR | 472 | 462 | $-2 \%$ |
| Surrey, Delta, | 3,142 | 3,130 | $0 \%$ |
| Langley, Fraser V | 27 | 27 | $0 \%$ |
| Point Roberts | 1,555 | 1,534 | $-1 \%$ |
| Blaine,Ferndale | 2,779 | 2,847 | $2 \%$ |
| Lynden, Sumas | 953 | 917 | $-4 \%$ |
| Bellingham | 1,372 | 1,363 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | $\%$ Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 468 | 493 | $5 \%$ |
| Bur, NW, NE, MR | 232 | 240 | $3 \%$ |
| Surrey, Delta, | 541 | 508 | $-6 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | 207 | 226 | $9 \%$ |
| Blaine,Ferndale | 396 | 371 | $-6 \%$ |
| Lynden, Sumas | 183 | 195 | $7 \%$ |
| Bellingham | 848 | 842 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Table 7-6 Trip Origin and Distribution Total by Trip Purposes (Summer Weekend)

Summer Weekend - Work Trip

| Origin |  |  |  |
| :--- | ---: | ---: | ---: |
| Subarea | Observed | Estimated | \% Diff |
| N/W Van, Van, Rich | 227 | 232 | $2 \%$ |
| Bur, NW, NE, MR | 90 | 96 | $6 \%$ |
| Surrey, Delta, | 301 | 289 | $-4 \%$ |
| Langley, Fraser V | 60 | 62 | $4 \%$ |
| Point Roberts | 220 | 220 | $0 \%$ |
| Blaine,Ferndale | 80 | 79 | $0 \%$ |
| Lynden, Sumas | 100 | 99 | $-2 \%$ |
| Bellingham | 204 | 206 | $1 \%$ |
| Skagit, PSRC |  |  |  |

Summer Weekend - Recreation Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 3,201 | 3,200 | $0 \%$ |
| Bur, NW, NE, MR | 1,722 | 1,695 | $-2 \%$ |
| Surrey, Delta, | 4,759 | 4,780 | $0 \%$ |
| Langley, Fraser V | 66 | 73 | $11 \%$ |
| Point Roberts | 1,463 | 1,464 | $0 \%$ |
| Blaine,Ferndale | 3,073 | 3,076 | $0 \%$ |
| Lynden, Sumas | 1,462 | 1,460 | $0 \%$ |
| Bellingham | 2,312 | 2,313 | $0 \%$ |
| Skagit, PSRC |  |  |  |

Summer Weekend - Shopping Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 750 | 748 | $0 \%$ |
| Bur, NW, NE, MR | 345 | 355 | $3 \%$ |
| Surrey, Delta, | 1,513 | 1,508 | $0 \%$ |
| Langley, Fraser V | 29 | 25 | $0 \%$ |
| Point Roberts | 934 | 963 | $3 \%$ |
| Blaine,Ferndale | 355 | 334 | $-6 \%$ |
| Lynden, Sumas | 844 | 848 | $0 \%$ |
| Bellingham | 296 | 285 | $-4 \%$ |
| Skagit, PSRC |  |  |  |

Summer Weekend - Vacation Trip
Origin

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 613 | 617 | $1 \%$ |
| Bur, NW, NE, MR | 192 | 193 | $0 \%$ |
| Surrey, Delta, | 335 | 331 | $-1 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | 151 | 149 | $-1 \%$ |
| Blaine,Ferndale | 777 | 776 | $0 \%$ |
| Lynden, Sumas | 226 | 225 | $0 \%$ |
| Bellingham | 584 | 589 | $1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 181 | 181 | $0 \%$ |
| Bur, NW, NE, MR | 42 | 39 | $-6 \%$ |
| Surrey, Delta, | 381 | 383 | $1 \%$ |
| Langley, Fraser V | - | 1 | N/A |
| Point Roberts | 138 | 142 | $3 \%$ |
| Blaine,Ferndale | 166 | 162 | $-3 \%$ |
| Lynden, Sumas | 151 | 158 | $5 \%$ |
| Bellingham | 224 | 217 | $-3 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 2,440 | 2,422 | $-1 \%$ |
| Bur, NW, NE, MR | 1,010 | 995 | $-1 \%$ |
| Surrey, Delta, | 4,830 | 4,862 | $1 \%$ |
| Langley, Fraser V | 30 | 34 | $14 \%$ |
| Point Roberts | 1,484 | 1,483 | $0 \%$ |
| Blaine,Ferndale | 2,664 | 2,673 | $0 \%$ |
| Lynden, Sumas | 1,729 | 1,727 | $0 \%$ |
| Bellingham | 3,871 | 3,865 | $0 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | \% Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 494 | 517 | $5 \%$ |
| Bur, NW, NE, MR | 278 | 265 | $-5 \%$ |
| Surrey, Delta, | 1,645 | 1,634 | $-1 \%$ |
| Langley, Fraser V | 13 | 15 | $12 \%$ |
| Point Roberts | 648 | 653 | $1 \%$ |
| Blaine,Ferndale | 340 | 355 | $4 \%$ |
| Lynden, Sumas | 1,277 | 1,255 | $-2 \%$ |
| Bellingham | 371 | 373 | $1 \%$ |
| Skagit, PSRC |  |  |  |

Destination

| Subarea | Observed | Estimated | $\%$ Diff |
| :--- | ---: | ---: | ---: |
| N/W Van, Van, Rich | 589 | 580 | $-2 \%$ |
| Bur, NW, NE, MR | 325 | 350 | $8 \%$ |
| Surrey, Delta, | 824 | 808 | $-2 \%$ |
| Langley, Fraser V | - | - | $0 \%$ |
| Point Roberts | 17 | 20 | $18 \%$ |
| Blaine,Ferndale | 157 | 156 | $-1 \%$ |
| Lynden, Sumas | 66 | 71 | $8 \%$ |
| Bellingham | 900 | 893 | $-1 \%$ |
| Skagit, PSRC |  |  |  |

Table 7-7 Model Results by Day of Week, Direction, Time of Day, and Port-of-Entry (Summer and Fall)

| Day of week | direction | Time of day | US/Canada Border Crossings |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Peace Arch | Pac Hwy | Lynden | Sumas |  |
| Summer Weekend | Northbound | AM Peak | 857 | 400 | 344 | 354 | 1,955 |
|  |  | PM Peak | 1,546 | 1,236 | 632 | 800 | 4,213 |
|  |  | Off Peak | 4,414 | 2,919 | 1,960 | 1,995 | 11,288 |
|  |  | Daily | 6,817 | 4,555 | 2,936 | 3,149 | 17,456 |
|  | Southbound | AM Peak | 1,394 | 1,011 | 611 | 588 | 3,604 |
|  |  | PM Peak | 1,335 | 1,016 | 843 | 954 | 4,148 |
|  |  | Off Peak | 4,876 | 3,510 | 1,886 | 2,019 | 12,291 |
|  |  | Daily | 7,605 | 5,537 | 3,340 | 3,561 | 20,043 |
| Summer Weekday | Northbound | AM Peak | 1,036 | 500 | 172 | 310 | 2,018 |
|  |  | PM Peak | 1,312 | 830 | 451 | 583 | 3,177 |
|  |  | Off Peak | 3,611 | 2,289 | 1,476 | 1,537 | 8,913 |
|  |  | Daily | 5,959 | 3,619 | 2,099 | 2,430 | 14,107 |
|  | Southbound | AM Peak | 1,347 | 808 | 512 | 613 | 3,280 |
|  |  | PM Peak | 1,289 | 906 | 479 | 743 | 3,416 |
|  |  | Off Peak | 3,940 | 2,594 | 1,382 | 1,591 | 9,507 |
|  |  | Daily | 6,576 | 4,308 | 2,373 | 2,947 | 16,203 |


| Day of week | direction | Time of day | US/Canada Border Crossings |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Peace Arch | Pac Hwy | Lynden | Sumas |  |
| Fall Weekend | Northbound | AM Peak | 726 | 432 | 197 | 192 | 1,547 |
|  |  | PM Peak | 1,249 | 843 | 531 | 561 | 3,185 |
|  |  | Off Peak | 3,240 | 1,856 | 1,136 | 1,245 | 7,477 |
|  |  | Daily | 5,216 | 3,131 | 1,865 | 1,998 | 12,209 |
|  | Southbound | AM Peak | 1,070 | 668 | 290 | 302 | 2,330 |
|  |  | PM Peak | 1,364 | 761 | 569 | 593 | 3,287 |
|  |  | Off Peak | 3,790 | 1,970 | 1,159 | 1,360 | 8,279 |
|  |  | Daily | 6,225 | 3,398 | 2,019 | 2,255 | 13,897 |
| Fall Weekday | Northbound | AM Peak | 569 | 304 | 122 | 177 | 1,172 |
|  |  | PM Peak | 980 | 513 | 320 | 373 | 2,186 |
|  |  | Off Peak | 2,330 | 1,200 | 713 | 869 | 5,112 |
|  |  | Daily | 3,879 | 2,017 | 1,155 | 1,419 | 8,470 |
|  | Southbound | AM Peak | 1,013 | 720 | 201 | 250 | 2,184 |
|  |  | PM Peak | 963 | 584 | 266 | 417 | 2,230 |
|  |  | Off Peak | 2,594 | 1,443 | 705 | 1,083 | 5,825 |
|  |  | Daily | 4,570 | 2,747 | 1,172 | 1,750 | 10,239 |

Table 7-8 Percentage Errors of Model Results by Day of Week, Direction, Time of Day, and Port-of-Entry (Summer and Fall)

| Day of week | direction | Time of day | US/Canada Border Crossings |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Peace Arch | Pac Hwy | Lynden | Sumas |  |
| Summer Weekend | Northbound | AM Peak | 1.6\% | 5.1\% | -5.7\% | -3.3\% | 0.0\% |
|  |  | PM Peak | 0.4\% | -0.6\% | -0.1\% | -1.6\% | -0.3\% |
|  |  | Off Peak | 1.2\% | -0.3\% | -0.3\% | -1.0\% | 0.2\% |
|  |  | Daily | 1.1\% | 0.0\% | -0.9\% | -1.4\% | 0.0\% |
|  | Southbound | AM Peak | -0.9\% | 0.2\% | 1.3\% | -0.7\% | -0.2\% |
|  |  | PM Peak | 0.0\% | 0.1\% | -2.1\% | 2.5\% | 0.1\% |
|  |  | Off Peak | 0.0\% | 0.9\% | -0.2\% | -1.4\% | 0.0\% |
|  |  | Daily | -0.2\% | 0.6\% | -0.4\% | -0.3\% | 0.0\% |
| Summer <br> Weekday | Northbound | AM Peak | 0.0\% | -1.4\% | 8.9\% | -1.3\% | 0.1\% |
|  |  | PM Peak | 0.3\% | 1.1\% | 1.0\% | -1.4\% | 0.3\% |
|  |  | Off Peak | 0.2\% | 1.0\% | 0.4\% | -2.9\% | -0.1\% |
|  |  | Daily | 0.2\% | 0.7\% | 1.2\% | -2.4\% | 0.0\% |
|  | Southbound | AM Peak | -2.0\% | -0.2\% | 1.6\% | 8.3\% | 0.8\% |
|  |  | PM Peak | -0.2\% | -1.7\% | 2.7\% | 7.6\% | 1.4\% |
|  |  | Off Peak | -2.8\% | -0.7\% | 0.0\% | 4.1\% | -0.8\% |
|  |  | Daily | -2.2\% | -0.9\% | 0.9\% | 5.8\% | 0.0\% |


| Day of week | direction | Time of day | US/Canada Border Crossings |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Peace Arch | Pac Hwy | Lynden | Sumas |  |
| Fall Weekend | Northbound | AM Peak | 0.2\% | 1.7\% | -0.3\% | -0.7\% | 0.4\% |
|  |  | PM Peak | 0.5\% | -0.4\% | 2.3\% | -1.0\% | 0.3\% |
|  |  | Off Peak | 0.5\% | -1.7\% | 0.8\% | -0.6\% | -0.2\% |
|  |  | Daily | 0.5\% | -0.9\% | 1.1\% | -0.7\% | 0.0\% |
|  | Southbound | AM Peak | 0.1\% | 0.3\% | -0.9\% | -3.7\% | -0.5\% |
|  |  | PM Peak | 2.0\% | 0.5\% | 3.1\% | 0.3\% | 1.5\% |
|  |  | Off Peak | -0.2\% | -0.9\% | -2.2\% | 1.0\% | -0.5\% |
|  |  | Daily | 0.3\% | -0.4\% | -0.6\% | 0.1\% | 0.0\% |
| Fall Weekday | Northbound | AM Peak | 1.2\% | -0.3\% | -2.4\% | -2.2\% | -0.1\% |
|  |  | PM Peak | 0.3\% | 1.4\% | -0.6\% | -2.4\% | 0.0\% |
|  |  | Off Peak | -0.2\% | 0.8\% | 0.8\% | -1.1\% | 0.0\% |
|  |  | Daily | 0.2\% | 0.8\% | 0.1\% | -1.6\% | 0.0\% |
|  |  | AM Peak | -1.9\% | -0.8\% | 9.8\% | 0.0\% | -0.4\% |
|  | Southbound | PM Peak | -1.2\% | -2.2\% | 0.4\% | 6.4\% | 0.0\% |
|  |  | Off Peak | -1.7\% | -1.5\% | 2.5\% | 5.9\% | 0.2\% |
|  |  | Daily | -1.7\% | -1.5\% | 3.2\% | 5.1\% | 0.0\% |

In general, the passenger model produces remarkably accurate estimates of cross-border travel over the system and reasonable comparisons with observed counts. With the use of the border choice model, the percentage of trips that use the four U.S./Canada border crossings can accurately be estimated.

## Freight Model

The first two model components are trip production and attraction models that served as inputs to the origin choice and destination choice models. In order to validate these models, the number of trucks from the survey by commodity groups, which serve as trip purposes here, are derived and compared against the freight model results. These are presented in Table 7.9 for the fall weekday freight model. This table also shows totals by commodity from origin choice and destination choice models.

The destination choice model, which is a trip distribution model, was validated at a more disaggregate level that is at the 13-district level. Table 7.10 shows the number of trucks attracted to each district by commodity group in the expanded survey and the freight model. Though the survey showed no trucks from and to Skagit County, which is not entirely true, the freight model was created to estimate truck trips for this county. All the model parameters like trip rates and model coefficients for the Puget Sound region were used for Skagit County.
Table 7.11 shows the border-crossing choice model summary for all the four seasons by crossing location and time of day. These results are only for the internal-internal trips and so are the other results presented until now. The externals are derived directly from the expanded survey database and added to the internal trips by crossing location and time of day just before trip assignment.
Table 7.12 shows the freight demand model results after trip assignment. This includes both internal and external trips, and is within $+/-$ two percent of the observed data.

## Table 7.9 Truck Trip Generation and Distribution Model

| Commodity Type | Fall Weekday |  |  |  |  | Fall Weekend |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Productions | Attractions | Origins | O-D Trip Table | IMTC Survey | Productions | Attractions | Origins | O-D Trip Table | IMTC Survey |
| Bulk-Printed-Unknown | 242 | 224 | 242 | 224 | 242 | 27 | 27 | 27 | 27 | 27 |
| Farm | 118 | 118 | 118 | 118 | 118 | - | - | - | - | - |
| Food | 177 | 177 | 177 | 177 | 177 | 36 | 35 | 36 | 35 | 36 |
| Wood | 408 | 410 | 408 | 410 | 408 | - | - | - | - | - |
| Manufacturing | 882 | 883 | 882 | 883 | 882 | 285 | 286 | 285 | 286 | 286 |
| Empty | 775 | 774 | 775 | 774 | 773 | 51 | 51 | 51 | 51 | 52 |
| Total | 2,602 | 2,586 | 2,602 | 2,586 | 2,600 | 400 | 401 | 400 | 401 | 401 |
|  | Summer Weekday |  |  |  |  | Summer Weekend |  |  |  |  |
| Commodity Type | Productions | Attractions | Origins | O-D Trip Table | IMTC Survey | Productions | Attractions | Origins | O-D Trip Table | IMTC Survey |
| Bulk-Printed-Unknown | 260 | 260 | 260 | 260 | 260 | 66 | 66 | 66 | 66 | 65 |
| Farm | 77 | 77 | 77 | 77 | 77 | 24 | 24 | 24 | 24 | 28 |
| Food | 171 | 171 | 171 | 171 | 171 | 88 | 88 | 88 | 88 | 88 |
| Wood | 412 | 413 | 412 | 413 | 412 | 104 | 104 | 104 | 104 | 104 |
| Manufacturing | 834 | 833 | 834 | 833 | 833 | 194 | 194 | 194 | 194 | 194 |
| Empty | 1,211 | 1,213 | 1,211 | 1,213 | 1,209 | 226 | 226 | 226 | 226 | 226 |
| Total | 2,964 | 2,967 | 2,964 | 2,967 | 2,962 | 701 | 733 | 701 | 733 | 705 |

## Table 7.10 Destination Choice Model

| Fall Weekday | GVRD1 | GVRD2 | GVRD3 | GVRD4 | GVRD5 | GVRD6 | GVRD7 | GVRD8 | WCNT1 | WCNT2 | WCNT3 | SKAG | Puget | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From IMTC Survey |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bulk-PrintedUnknown | 0.0 | 13.0 | 73.3 | 41.8 | 28.7 | 8.6 | 5.1 | 2.1 | 13.9 | 20.0 | 0.0 | 0.0 | 35.3 | 242 |
| Farm | 0.0 | 1.9 | 1.8 | 0.0 | 1.8 | 0.0 | 2.1 | 2.4 | 14.7 | 0.0 | 48.2 | 0.0 | 45.4 | 118 |
| Food | 0.0 | 25.7 | 17.3 | 26.5 | 10.2 | 12.0 | 12.0 | 11.4 | 0.0 | 1.6 | 36.4 | 0.0 | 24.0 | 177 |
| Wood | 6.5 | 0.0 | 30.8 | 16.9 | 2.1 | 0.0 | 6.5 | 20.8 | 103.2 | 92.6 | 32.9 | 0.0 | 95.5 | 408 |
| Manufacturing | 6.5 | 26.2 | 66.8 | 108.6 | 17.1 | 8.7 | 46.6 | 31.6 | 87.7 | 86.3 | 36.1 | 0.0 | 359.7 | 882 |
| Empty | 13.0 | 25.4 | 74.9 | 226.0 | 113.1 | 6.5 | 67.2 | 32.9 | 57.0 | 49.9 | 6.1 | 0.0 | 101.0 | 773 |
| Total | 26 | 92 | 265 | 420 | 173 | 36 | 140 | 101 | 277 | 250 | 160 | 0 | 661 | 2,600 |
| Destination Choice Models |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bulk-PrintedUnknown | 0 | 13 | 73.3 | 41.7 | 28.7 | 8.6 | 5.1 | 2.1 | 14 | 2 | 0 | 1.1 | 34 | 224 |
| Farm | 0 | 1.9 | 1.8 | 0 | 1.8 | 0 | 2.1 | 2.4 | 14.8 | 0 | 48.2 | 6.3 | 39.1 | 118 |
| Food | 0 | 25.7 | 17.3 | 26.5 | 10.2 | 12 | 12 | 11.4 | 0 | 1.6 | 36.4 | 0.9 | 23 | 177 |
| Wood | 6.5 | 0 | 30.8 | 17 | 2.1 | 0 | 6.5 | 20.8 | 106 | 92.6 | 32.9 | 3 | 92.3 | 411 |
| Manufacturing | 6.5 | 26.3 | 66.8 | 109 | 17.1 | 8.7 | 46.6 | 31.6 | 88.8 | 86.3 | 36.1 | 12 | 347.9 | 883 |
| Empty | 13.1 | 25.4 | 74.9 | 226 | 113 | 6.5 | 67.2 | 32.8 | 58.2 | 49.9 | 6.1 | 3.4 | 97.6 | 774 |
| Total | 26 | 92 | 265 | 420 | 173 | 36 | 140 | 101 | 282 | 232 | 160 | 26 | 634 | 2,586 |

Cascade Gateway Travel Demand Model
Table 7.10 Destination Choice Model (continued)

| Summer Weekday | GVRD1 | GVRD2 | GVRD3 | GVRD4 | GVRD5 | GVRD6 | GVRD7 | GVRD8 | WCNT1 | WCNT2 | WCNT3 | SKAG | Puget | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From IMTC Survey |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bulk-PrintedUnknown | 0.0 | 11.6 | 57.3 | 47.2 | 18.2 | 0.0 | 6.9 | 0.0 | 0.0 | 8.0 | 21.4 | 0.0 | 89.1 | 259.7 |
| Farm | 0.0 | 3.8 | 0.0 | 0.0 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 15.0 | 7.9 | 0.0 | 49.1 | 77.3 |
| Food | 0.0 | 40.3 | 0.0 | 28.3 | 5.2 | 0.0 | 3.8 | 5.2 | 14.7 | 2.6 | 0.0 | 0.0 | 70.6 | 170.8 |
| Wood | 7.1 | 1.5 | 1.5 | 20.8 | 23.4 | 0.0 | 0.0 | 13.4 | 68.3 | 58.5 | 55.4 | 0.0 | 161.8 | 411.6 |
| Manufacturing | 18.2 | 67.3 | 54.1 | 66.8 | 123.5 | 1.5 | 28.9 | 18.4 | 8.0 | 111.2 | 68.1 | 0.0 | 267.0 | 833.0 |
| Empty | 10.7 | 97.1 | 54.7 | 247.0 | 192.5 | 10.1 | 59.0 | 88.4 | 183.4 | 78.1 | 10.6 | 0.0 | 177.9 | 1,209.4 |
| Total | 36 | 221 | 167 | 410 | 363 | 12 | 100 | 125 | 274 | 273 | 164 | 0 | 816 | 2,962 |
| Destination Choice Models |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bulk-PrintedUnknown | 0 | 11.6 | 57.2 | 47.2 | 18.2 | 0 | 6.9 | 0 | 0 | 8 | 21.4 | 2.8 | 86.4 | 259.7 |
| Farm | 0 | 3.8 | 0 | 0 | 0 | 0 | 1.4 | 0 | 0 | 15 | 7.9 | 6.8 | 42.3 | 77.2 |
| Food | 0 | 40.3 | 0 | 28.4 | 5.2 | 0 | 3.8 | 5.2 | 15.1 | 2.6 | 0 | 2.7 | 67.8 | 171.1 |
| Wood | 7.1 | 1.5 | 1.4 | 20.8 | 23.4 | 0 | 0 | 13.4 | 70.2 | 58.5 | 55.4 | 5.1 | 156.5 | 413.3 |
| Manufacturing | 18.2 | 67.3 | 54 | 66.8 | 123 | 1.4 | 28.9 | 18.4 | 8.1 | 111 | 68.1 | 8.7 | 258.5 | 833 |
| Empty | 10.7 | 97.1 | 54.7 | 247 | 192 | 10.1 | 59 | 88.4 | 187 | 78.1 | 10.6 | 5.9 | 172 | 1213 |
| Total | 36 | 222 | 167 | 410 | 362 | 12 | 100 | 125 | 281 | 273 | 163 | 32 | 784 | 2,967 |

Table 7.10 Destination Choice Model (continued)

| Fall Weekend | GVRD1 | GVRD2 | GVRD3 | GVRD4 | GVRD5 | GVRD6 | GVRD7 | GVRD8 | WCNT1 | WCNT2 | WCNT3 | SKAG | Puget | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From IMTC Survey |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bulk-PrintedUnknown | 0.0 | 0.0 | 27.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 27.3 |
| Farm | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Food | 0.0 | 0.0 | 0.0 | 17.9 | 8.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 9.0 | 35.6 |
| Wood | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Manufacturing | 0.0 | 0.0 | 0.0 | 51.5 | 0.0 | 0.0 | 42.9 | 0.0 | 42.4 | 33.4 | 0.0 | 0.0 | 115.4 | 285.6 |
| Empty | 0.0 | 0.0 | 0.0 | 0.0 | 8.6 | 0.0 | 42.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 51.5 |
| Total | 0 | 0 | 27 | 69 | 17 | 0 | 86 | 0 | 42 | 33 | 0 | 0 | 124 | 400 |
| Destination Choice Models |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bulk-PrintedUnknown | 0 | 0 | 27.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27.3 |
| Farm | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Food | 0 | 0 | 0 | 17.9 | 8.6 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 | 8.6 | 35.4 |
| Wood | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Manufacturing | 0 | 0 | 0 | 51.5 | 0 | 0 | 42.9 | 0 | 42.9 | 33.4 | 0 | 3.8 | 111.9 | 286.4 |
| Empty | 0 | 0 | 0 | 0 | 8.6 | 0 | 42.9 | 0 | 0 | 0 | 0 | 0 | 0 | 51.5 |
| Total | 0 | 0 | 27 | 69 | 17 | 0 | 86 | 0 | 43 | 33 | 0 | 4 | 121 | 401 |

Table 7.10 Destination Choice Model (continued)

| Summer Weekend | GVRD1 | GVRD2 | GVRD3 | GVRD4 | GVRD5 | GVRD6 | GVRD7 | GVRD8 | WCNT1 | WCNT2 | WCNT3 | SKAG | Puget | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| From IMTC Survey |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bulk-PrintedUnknown | 0.0 | 0.0 | 27.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 37.88 | 65.4 |
| Farm | 0 | 0 | 0 | 0 | 0 | 0.00 | 27.5 | 0 | 0 | 0 | 0 | 0 | 0 | 27.5 |
| Food | 0 | 0 | 0 | 0 | 0 | 0.00 | 12.2 | 0 | 0 | 0 | 0 | 0 | 75.76 | 88.0 |
| Wood | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 11 | 0 | 0 | 55 | 0 | 37.88 | 103.9 |
| Manufacturing | 0 | 39.7 | 29.8 | 27.5 | 27.5 | 0.00 | 0 | 0 | 7.89 | 0 | 0 | 0 | 61.74 | 194.1 |
| Empty | 0 | 0 | 27.5 | 0 | 0 | 0.00 | 185 | 0 | 13.5 | 0 | 0 | 0 | 0 | 226.0 |
| Total | 0 | 40 | 85 | 28 | 28 | 0 | 225 | 11 | 21 | 0 | 55 | 0 | 213 | 705 |
| Destination Choice Models |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bulk-Printed- <br> Unknown | 0 | 0 | 27.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.2 | 36.9 | 65.6 |
| Farm | 0 | 0 | 0 | 0 | 0 | 0 | 27.5 | 0 | 0 | 0 | 0 | 0 | 0 | 27.5 |
| Food | 0 | 0 | 0 | 0 | 0 | 0 | 12.2 | 0 | 0 | 0 | 0 | 2.9 | 72.8 | 87.9 |
| Wood | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 0 | 55 | 1.2 | 36.9 | 104.1 |
| Manufacturing | 0 | 39.8 | 29.8 | 27.5 | 27.5 | 0 | 0 | 0 | 8 | 0 | 0 | 2 | 59.9 | 194.5 |
| Empty | 0 | 0 | 27.5 | 0 | 0 | 0 | 185 | 0 | 13.7 | 0 | 0 | 0 | 0 | 226.2 |
| Total | 0 | 40 | 85 | 28 | 28 | 0 | 225 | 11 | 22 | 0 | 55 | 7 | 207 | 706 |

Table 7.11 Border-Crossing Choice Model Summary


Table 7.12 Freight Demand Model Summary

| Fall Weekday | PacHwy | Lynden/ Aldergrove | Sumas/ Aldergrove | Total | Fall Weekend | PacHwy | Lynden/ Aldergrove | Sumasl Aldergrove | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IMTC Survey |  |  |  |  | IMTC Survey |  |  |  |  |
| AM | 443 | 99 | 124 | 666 | AM | 280 | 0 | 0 | 280 |
| PM | 521 | 150 | 135 | 805 | PM | 300 | 0 | 0 | 300 |
| OP | 2,195 | 306 | 344 | 2,844 | OP | 1,225 | 0 | 0 | 1,225 |
| Total | 3,159 | 555 | 602 | 4,316 | Total | 1,805 | 0 | 0 | 1,805 |
| Border-Crossing Model |  |  |  |  | Border-Crossin |  |  |  |  |
| AM | 432 | 90 | 125 | 647 | AM | 278 | 1 | 0 | 279 |
| PM | 544 | 143 | 132 | 819 | PM | 295 | 2 | 2 | 299 |
| OP | 2,155 | 296 | 339 | 2,789 | OP | 1,213 | 7 | 0 | 1,220 |
| Total | 3,131 | 530 | 595 | 4,256 | Total | 1,786 | 10 | 3 | 1,799 |
| Summer Weekday |  |  |  |  | Summer Week |  |  |  |  |
| AM | 551 | 78 | 135 | 764 | AM | 294 | 27 | 34 | 355 |
| PM | 546 | 76 | 133 | 755 | PM | 321 | 55 |  | 376 |
| OP | 2,340 | 212 | 391 | 2,943 | OP | 1,194 | 185 |  | 1,379 |
| Total | 3,437 | 366 | 659 | 4,462 | Total | 1,809 | 267 | 34 | 2,110 |
| Border-Crossing Model |  |  |  |  | Border-Crossin |  |  |  |  |
| AM | 533 | 74 | 138 | 745 | AM | 325 | 27 | 23 | 375 |
| PM | 549 | 73 | 113 | 735 | PM | 298 | 50 | 0 | 348 |
| OP | 2,336 | 181 | 354 | 2,871 | OP | 1,198 | 162 | 0 | 1,360 |
| Total | 3,418 | 328 | 606 | 4,352 | Total | 1,822 | 239 | 23 | 2,084 |

### 8.0 Model Application

### 8.1 Performance Measures

In order to determine the relative effectiveness of different strategies and projects in improving system performance, five key performance attributes of the truckfreight system are identified that focus on regional planning goals and objectives:

1. Delay;
2. Reliability;
3. Emissions; and
4. Safety.

Delay and reliability are measured by EMME/2 whereas the other two attributes are post processed in spreadsheets based on lookup tables from FHWA research on benefit-cost analysis ${ }^{2}$. It is to be noted that the significance of all these performance measures is well justified when comparing two or more alternatives. The results from all the four travel demand forecasting models are presented in this section.

## Delay

Delay is measured by the difference between congested vehicle hours and freeflow vehicle hours on a systemwide basis. Vehicle hours are computed as the product between the number of vehicular volume and the travel time. Table 8.1 shows the systemwide delay by season and time period. It is assumed that there is no congestion during the off-peak period, and hence the congested times are the same as the free flow times for this period. However, there is a significant delay that is caused due to the waiting times at the border-crossing locations for all time periods.

Autos and trucks are summarized as the percentage contribution to delay they have for each season and time period in Table 8.1. The highest overall delay hours is in the summer weekday and this is approximately five times as high as the delay on a fall weekday. The highest delay for trucks is on a summer weekday, but fall weekdays are almost as high delay for trucks.

[^0]Table 8.1 Systemwide Delay by Season Time Period

|  | AM | PM | OP | Daily | Percent <br> Autos | Percent <br> Trucks |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fall Weekday |  |  |  |  |  |  |
| Congested Travel Time (vehicle Hours) | 6,605 | 8,974 | 19,980 | 35,560 | $70 \%$ | $30 \%$ |
| Free Flow Travel Time (Vehicle Hours) | 5,578 | 6,991 | 18,708 | 31,277 | $71 \%$ | $29 \%$ |
| Delay (Vehicle Hours) | 1,028 | 1,984 | 1,272 | 4,284 | $67 \%$ | $33 \%$ |
| Fall Weekend |  |  |  |  |  |  |
| Congested Travel Time (vehicle Hours) | 8,176 | 13,483 | 30,466 | 52,125 | $90 \%$ | $10 \%$ |
| Free Flow Travel Time (Vehicle Hours) | 6,640 | 9,664 | 26,886 | 43,191 | $90 \%$ | $10 \%$ |
| Delay (Vehicle Hours) | 1,535 | 3,819 | 3,579 | 8,935 | $91 \%$ | $9 \%$ |
| Summer Weekday |  |  |  |  |  |  |
| Congested Travel Time (vehicle Hours) | 11,251 | 15,259 | 36,133 | 62,643 | $84 \%$ | $16 \%$ |
| Free Flow Travel Time (Vehicle Hours) | 8,892 | 10,959 | 31,656 | 51,508 | $84 \%$ | $16 \%$ |
| Delay (Vehicle Hours) | 2,359 | 4,299 | 4,477 | 11,136 | $85 \%$ | $15 \%$ |
| Summer Weekend |  |  |  |  |  |  |
| Congested Travel Time (vehicle Hours) | 13,705 | 23,506 | 53,535 | 90,747 | $94 \%$ | $6 \%$ |
| Free Flow Travel Time (Vehicle Hours) | 10,456 | 15,257 | 42,109 | 67,822 | $93 \%$ | $7 \%$ |
| Delay (Vehicle Hours) | 3,250 | 8,249 | 11,426 | 22,925 | $97 \%$ | $3 \%$ |

## Reliability

The reliability performance measure identified was the freeway vehicle hours by time period. This measure would indicate that, as delay on the freeway increases, the overall reliability of the system would tend to decrease. Table 8.2 presents the freeway vehicle hours by season and time period.

Table 8.2 shows similar delay characteristics to the overall delay, where summer weekends have the highest overall delay and the highest truck delay is on summer weekdays.

Table 8.2 Freeway Delay by Season and Time Period

|  | AM | PM | OP | Daily | Percent <br> Autos | Percent <br> Trucks |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fall Weekday |  |  |  |  |  |  |
| Congested Travel Time (vehicle Hours) | 5,737 | 7,746 | 17,292 | 30,777 | $69 \%$ | $31 \%$ |
| Free Flow Travel Time (Vehicle Hours) | 4,800 | 5,909 | 16,020 | 26,729 | $69 \%$ | $31 \%$ |
| Delay (Vehicle Hours) | 938 | 1,837 | 1,272 | 4,047 | $66 \%$ | $34 \%$ |
| Fall Weekend |  |  |  |  |  |  |
| Congested Travel Time (vehicle Hours) | 7,318 | 11,940 | 27,210 | 46,468 | $90 \%$ | $10 \%$ |
| Free Flow Travel Time (Vehicle Hours) | 5,880 | 8,313 | 23,630 | 37,825 | $90 \%$ | $10 \%$ |
| Delay (Vehicle Hours) | 1,438 | 3,626 | 3,579 | 8,644 | $90 \%$ | $10 \%$ |
| Summer Weekday |  |  |  |  |  |  |
| Congested Travel Time (vehicle Hours) | 9,922 | 13,492 | 31,857 | 55,271 | $84 \%$ | $16 \%$ |
| Free Flow Travel Time (Vehicle Hours) | 7,715 | 9,380 | 27,380 | 44,475 | $84 \%$ | $16 \%$ |
| Delay (Vehicle Hours) | 2,206 | 4,112 | 4,477 | 10,796 | $85 \%$ | $15 \%$ |
| Summer Weekend |  |  |  |  |  |  |
| Congested Travel Time (vehicle Hours) | 12,447 | 21,424 | 48,578 | 82,449 | $94 \%$ | $6 \%$ |
| Free Flow Travel Time (Vehicle Hours) | 9,331 | 13,457 | 37,151 | 59,940 | $93 \%$ | $7 \%$ |
| Delay (Vehicle Hours) | 3,116 | 7,966 | 11,426 | 22,509 | $97 \%$ | $3 \%$ |

## Emissions

Table 8.3 presents emissions by type - reactive organic gas (ROG), carbon monoxide (CO) and nitrous oxide $\left(\mathrm{NO}_{\mathrm{x}}\right)$ emissions. This performance measure depends upon the congested speeds and the rates are derived from MOBILE 6.

As all the cross-border trucks are considered to be heavy trucks, the $\mathrm{NO}_{\mathrm{x}}$ emissions have the highest percentage contributions from trucks for all seasons and time periods. Because of the trucks, weekdays have higher NOx emissions than weekends. Since CO and ROG are more dominated by autos, these have higher emissions in the summer weekends, due to the higher volumes of autos.

Table 8.3 Emissions by Season and Time Period

|  | AM | PM | OP | Daily | Percent <br> Autos | Percent <br> Trucks |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Fall Weekday |  |  |  |  |  |  |
| ROG (tons) | 0.1623 | 0.2024 | 0.5133 | 0.8781 | $57 \%$ | $43 \%$ |
| CO (tons) | 3.2899 | 4.0086 | 10.2934 | 17.5920 | $68 \%$ | $32 \%$ |
| NO $_{x}$ (tons) | 1.8021 | 2.1681 | 7.1609 | 11.1312 | $13 \%$ | $87 \%$ |
| Fall Weekend |  |  |  |  |  |  |
| ROG (tons) | 0.1838 | 0.2565 | 0.6965 | 1.1368 | $81 \%$ | $19 \%$ |
| CO (tons) | 4.0854 | 5.7022 | 15.7161 | 25.5039 | $87 \%$ | $13 \%$ |
| NOX (tons) | 1.3438 | 1.5736 | 5.7036 | 8.6211 | $32 \%$ | $68 \%$ |
| Summer Weekday |  |  |  |  |  |  |
| ROG (tons) | 0.2526 | 0.2988 | 0.8545 | 1.4059 | $72 \%$ | $28 \%$ |
| CO (tons) | 5.4079 | 6.4981 | 18.4462 | 30.3523 | $80 \%$ | $20 \%$ |
| NOX (tons) | 2.1691 | 2.2619 | 8.8213 | 13.2523 | $23 \%$ | $77 \%$ |
| Summer Weekend |  |  |  |  |  |  |
| ROG (tons) | 0.2833 | 0.4016 | 1.0565 | 1.7415 | $86 \%$ | $14 \%$ |
| CO (tons) | 6.3621 | 9.1438 | 24.3834 | 39.8894 | $91 \%$ | $9 \%$ |
| NOX (tons) | 1.8482 | 2.1235 | 6.9682 | 10.9400 | $41 \%$ | $59 \%$ |

## Safety

Safety measures the number of accidents by type - fatality, injury and property damage only (PDO) - per million vehicle miles traveled (VMT). Table 8.4 shows the number of accidents by season and time of day. This performance measure depends upon the volume-to-capacity ratio and generally increases as volume-to-capacity ratios increase. This table shows that summer weekends have the highest accident rates for all three types.

Table 8.4 Safety by Season and Time Period

|  | AM | PM | OP | Daily | Percent <br> Autos | Percent <br> Trucks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fall Weekday |  |  |  |  |  |  |
| Fatalities/Million VMT | 0.0022 | 0.0028 | 0.0079 | 0.0128 | 71\% | 29\% |
| Injuries/Million VMT | 0.1672 | 0.2122 | 0.6407 | 1.0201 | 72\% | 28\% |
| PDO/Million VMT | 0.2233 | 0.2842 | 0.8573 | 1.3646 | 73\% | 27\% |
| Fall Weekend |  |  |  |  |  |  |
| Fatalities/Million VMT | 0.0026 | 0.0038 | 0.0115 | 0.0181 | 89\% | 11\% |
| Injuries/Million VMT | 0.2001 | 0.3030 | 1.0341 | 1.5372 | 91\% | 9\% |
| PDO/Million VMT | 0.2655 | 0.4048 | 1.3780 | 2.0483 | 91\% | 9\% |
| Summer Weekday |  |  |  |  |  |  |
| Fatalities/Million VMT | 0.0035 | 0.0044 | 0.0136 | 0.0216 | 83\% | 17\% |
| Injuries/Million VMT | 0.2744 | 0.3479 | 1.1931 | 1.8153 | 84\% | 16\% |
| PDO/Million VMT | 0.3658 | 0.4649 | 1.5923 | 2.4230 | 85\% | 15\% |
| Summer Weekend |  |  |  |  |  |  |
| Fatalities/Million VMT | 0.0041 | 0.0061 | 0.0181 | 0.0283 | 92\% | 8\% |
| Injuries/Million VMT | 0.3191 | 0.4990 | 1.7044 | 2.5223 | 94\% | 6\% |
| PDO/Million VMT | 0.4233 | 0.6643 | 2.2653 | 3.3528 | 94\% | 6\% |

### 8.2 FORECASTS

In order to forecast future travel demand using the Cascade Gateway travel demand model, future year socioeconomic data and background travel times will need to be obtained from the four MPOs in the study area (GVRD, WCOG, SCOG, and PSRC). Appropriate changes to the network should also be made to reflect possible enhancements to the systemwide infrastructure and operations of highway facilities. The future year forecasts can then be estimated by applying the Cascade Gateway Model for the future year.

The Cascade Gateway travel forecasting model will primarily be used to provide an analytical basis for evaluating the benefits of transportation investments throughout the study area. These benefits can be summarized by the aforementioned performance measures. In addition, travel time comparisons across future baseline and alternative scenarios could be made to see the impact on mobility of vehicles on a set of specific key routes in the County.

## Appendix A. Origin-Destination Tables for Passenger Trips

Table A. 1 Fall Weekday Origin-Destination Tables for Passenger Trips Southbound Work Trips

Fall Weekday - Work Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 246 | 17 | 136 | 0 | 292 | 692 |
| Bur, NW, NE, MR | 90 | 76 | 72 | 0 | 52 | 290 |
| Surrey, Delta, <br> Langley, Fraser V | 511 | 355 | 269 | 7 | 199 | 1341 |
| Point Roberts | 88 | 18 | 48 | 0 | 20 | 174 |
| sum | 936 | 466 | 525 | 7 | 563 | 2497 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 252 | 25 | 128 | 2 | 285 | 692 |
| Bur, NW, NE, MR | 106 | 51 | 58 | 1 | 57 | 273 |
| Surrey, Delta, <br> Langley, Fraser V | 522 | 352 | 288 | 4 | 197 | 1364 |
| Point Roberts | 66 | 31 | 36 | 0 | 36 | 168 |
| sum | 946 | 459 | 511 | 7 | 575 | 2497 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 6 | 8 | -8 | 2 | -7 | 0 |
| Bur, NW, NE, MR | 15 | -25 | -13 | 1 | 5 | -17 |
| Surrey, Delta, <br> Langley, Fraser V | 11 | -2 | 19 | -3 | -2 | 23 |
| Point Roberts | -23 | 12 | -12 | 0 | 16 | -6 |
| sum | 10 | -7 | -14 | 0 | 12 | 0 |

Table A. 2 Fall Weekday Origin-Destination Tables for Passenger Trips Northbound Work Trips

Fall Weekday - Work Trip (NB)
Observed

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, <br> _nalav, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 116 | 79 | 351 | 7 | 553 |
| Lynden, Sumas | 58 | 41 | 581 | 7 | 687 |
| Bellingham | 121 | 39 | 242 | 30 | 432 |
| Skagit | 22 | 8 | 60 | 0 | 90 |
| PSRC | 120 | 17 | 73 | 0 | 210 |
| sum | 437 | 184 | 1307 | 44 | 1972 |

Modeled

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | surrey, <br> Delta, <br> Inalovi | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 120 | 50 | 374 | 12 | 557 |
| Lynden, Sumas | 57 | 59 | 571 | 14 | 700 |
| Bellingham | 119 | 34 | 250 | 8 | 411 |
| Skagit | 20 | 8 | 55 | 2 | 86 |
| PSRC | 117 | 19 | 78 | 5 | 220 |
| sum | 433 | 170 | 1328 | 41 | 1973 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, <br> Lnalov, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 4 | -29 | 23 | 5 | 4 |
| Lynden, Sumas | -1 | 18 | -11 | 7 | 12 |
| Bellingham | -2 | -5 | 8 | -22 | -21 |
| Skagit | -2 | 1 | -5 | 2 | -4 |
| PSRC | -3 | 2 | 5 | 5 | 10 |
| sum | -4 | -14 | 21 | -3 | 1 |

Table A. 3 Fall Weekday Origin-Destination Tables for Passenger Trips Southbound Recreation Trips

Fall Weekday - Recreation Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 172 | 89 | 144 | 20 | 219 | 643 |
| Bur, NW, NE, MR | 124 | 151 | 65 | 23 | 64 | 427 |
| Surrey, Delta, <br> Langley, Fraser V | 1044 | 990 | 621 | 67 | 271 | 2993 |
| Point Roberts | 11 | 0 | 20 | 0 | 20 | 51 |
| sum | 1351 | 1230 | 850 | 109 | 573 | 4113 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 209 | 89 | 126 | 15 | 219 | 658 |
| Bur, NW, NE, MR | 138 | 123 | 83 | 10 | 51 | 405 |
| Surrey, Delta, <br> Langley, Fraser V | 1030 | 992 | 626 | 79 | 276 | 3002 |
| Point Roberts | 17 | 14 | 10 | 1 | 7 | 49 |
| sum | 1393 | 1217 | 845 | 105 | 553 | 4113 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 37 | 0 | -18 | -5 | 1 | 15 |
| Bur, NW, NE, MR | 14 | -28 | 18 | -13 | -13 | -22 |
| Surrey, Delta, <br> Langley, Fraser V | -14 | 1 | 5 | 12 | 5 | 9 |
| Point Roberts | 5 | 14 | -10 | 1 | -13 | -1 |
| sum | 42 | -13 | -4 | -4 | -20 | 1 |

Table A. 4 Fall Weekday Origin-Destination Tables for Passenger Trips Northbound Recreation Trips

Fall Weekday - Recreation Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 192 | 79 | 620 | 17 | 907 |
| Lynden, Sumas | 213 | 119 | 830 | 0 | 1162 |
| Bellingham | 134 | 61 | 325 | 0 | 521 |
| Skagit | 7 | 0 | 10 | 0 | 17 |
| PSRC | 93 | 73 | 304 | 7 | 478 |
| sum | 639 | 332 | 2090 | 24 | 3085 |

Modeled

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 187 | 103 | 618 | 5 | 914 |
| Lynden, Sumas | 237 | 124 | 794 | 9 | 1164 |
| Bellingham | 107 | 53 | 356 | 5 | 520 |
| Skagit | 3 | 2 | 11 | 0 | 17 |
| PSRC | 97 | 47 | 323 | 5 | 471 |
| sum | 631 | 328 | 2103 | 24 | 3086 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | -5 | 24 | -1 | -12 | 6 |
| Lynden, Sumas | 25 | 5 | -36 | 9 | 2 |
| Bellingham | -28 | -9 | 30 | 5 | -1 |
| Skagit | -4 | 2 | 1 | 0 | 0 |
| PSRC | 3 | -26 | 19 | -2 | -6 |
| sum | -8 | -4 | 13 | 0 | 1 |

[^1]
## Table A. 5 Fall Weekday Origin-Destination Tables for Passenger Trips Southbound Shopping Trips

Fall Weekday - Shopping Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 45 | 0 | 223 | 7 | 7 | 282 |
| Bur, NW, NE, MR | 54 | 20 | 37 | 0 | 0 | 110 |
| Surrey, Delta, <br> Langley, Fraser V | 788 | 266 | 476 | 51 | 0 | 1581 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 886 | 286 | 735 | 58 | 7 | 1973 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/w Van, Van, Rich | 52 | 12 | 206 | 4 | 1 | 274 |
| Bur, NW, NE, MR | 54 | 20 | 37 | 0 | 0 | 111 |
| Surrey, Delta, <br> Langley, Fraser V | 791 | 266 | 476 | 48 | 6 | 1588 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 897 | 298 | 719 | 53 | 6 | 1973 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 7 | 12 | -17 | -3 | -7 | -7 |
| Bur, NW, NE, MR | 0 | 0 | 0 | 0 | 0 | 1 |
| Surrey, Delta, <br> Langley, Fraser V | 4 | -1 | 1 | -3 | 6 | 7 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 11 | 12 | -16 | -6 | -1 | 0 |

Table A. 6 Fall Weekday Origin-Destination Tables for Passenger Trips Northbound Shopping Trips

Fall Weekday - Shopping Trip (NB)
Observed

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 121 | 98 | 541 | 8 | 768 |
| Lynden, Sumas | 8 | 11 | 471 | 0 | 490 |
| Bellingham | 85 | 42 | 183 | 20 | 330 |
| Skagit | 20 | 0 | 17 | 0 | 37 |
| PSRC | 90 | 0 | 46 | 0 | 136 |
| sum | 323 | 151 | 1258 | 28 | 1761 |

Modeled

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 123 | 99 | 534 | 8 | 764 |
| Lynden, Sumas | 9 | 18 | 453 | 1 | 481 |
| Bellingham | 91 | 42 | 183 | 14 | 330 |
| Skagit | 13 | 2 | 23 | 0 | 38 |
| PSRC | 101 | 0 | 45 | 0 | 147 |
| sum | 337 | 162 | 1240 | 23 | 1761 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 1 | 1 | -6 | 0 | -4 |
| Lynden, Sumas | 1 | 7 | -18 | 1 | -8 |
| Bellingham | 6 | 0 | 0 | -6 | 0 |
| Skagit | -6 | 2 | 6 | 0 | 2 |
| PSRC | 11 | 0 | -1 | 0 | 11 |
| sum | 13 | 11 | -19 | -5 | 0 |

R-square $\quad 1.00$

Table A. 7 Fall Weekday Origin-Destination Tables for Passenger Trips Southbound Vacation Trips

Fall Weekday - Vacation Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 11 | 0 | 0 | 0 | 110 | 121 |
| Bur, NW, NE, MR | 0 | 27 | 7 | 0 | 59 | 93 |
| Surrey, Delta, <br> Langley, Fraser V | 0 | 65 | 0 | 20 | 100 | 184 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 11 | 92 | 7 | 20 | 269 | 398 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 8 | 6 | 3 | 5 | 106 | 128 |
| Bur, NW, NE, MR | 0 | 29 | 3 | 6 | 59 | 97 |
| Surrey, Delta, <br> Langley, Fraser V | 4 | 62 | 1 | 9 | 97 | 173 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 13 | 98 | 7 | 20 | 262 | 399 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | -3 | 6 | 3 | 5 | -3 | 7 |
| Bur, NW, NE, MR | 0 | 2 | -4 | 6 | 0 | 4 |
| Surrey, Delta, <br> Langley, Fraser V | 4 | -2 | 1 | -11 | -3 | -11 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 2 | 6 | 0 | 0 | -7 | 1 |

Table A. 8 Fall Weekday Origin-Destination Tables for Passenger Trips Northbound Vacation Trips

Fall Weekday - Vacation Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 37 | 8 | 25 | 0 | 69 |
| Lynden, Sumas | 56 | 36 | 108 | 0 | 199 |
| Bellingham | 15 | 0 | 7 | 0 | 22 |
| Skagit | 24 | 0 | 49 | 0 | 73 |
| PSRC | 96 | 42 | 88 | 0 | 226 |
| sum | 228 | 86 | 277 | 0 | 590 |

Modeled

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 32 | 8 | 16 | 0 | 57 |
| Lynden, Sumas | 57 | 37 | 120 | 0 | 214 |
| Bellingham | 13 | 4 | 7 | 0 | 24 |
| Skagit | 29 | 12 | 43 | 0 | 85 |
| PSRC | 82 | 34 | 95 | 0 | 211 |
| sum | 213 | 96 | 281 | 0 | 590 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | -4 | 0 | -8 | 0 | -13 |
| Lynden, Sumas | 1 | 1 | 12 | 0 | 15 |
| Bellingham | -2 | 4 | 0 | 0 | 2 |
| Skagit | 5 | 12 | -6 | 0 | 11 |
| PSRC | -14 | -8 | 7 | 0 | -15 |
| sum | -15 | 10 | 5 | 0 | 0 |

R-square

Table A. 9 Fall Weekend Origin-Destination Tables for Passenger Trips Southbound Work Trips

Fall Weekend - Work Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 114 | 10 | 10 | 0 | 111 | 245 |
| Bur, NW, NE, MR | 0 | 0 | 0 | 0 | 55 | 55 |
| Surrey, Delta, <br> Langley, Fraser V | 138 | 0 | 124 | 0 | 69 | 331 |
| Point Roberts | 10 | 0 | 0 | 0 | 0 | 10 |
| sum | 262 | 10 | 135 | 0 | 234 | 641 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 107 | 4 | 17 | 0 | 107 | 234 |
| Bur, NW, NE, MR | 4 | 1 | 2 | 0 | 52 | 59 |
| Surrey, Delta, <br> Langley, Fraser V | 142 | 5 | 114 | 0 | 76 | 337 |
| Point Roberts | 4 | 0 | 1 | 0 | 5 | 10 |
| sum | 257 | 10 | 134 | 0 | 239 | 641 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | -7 | -7 | 7 | 0 | -4 | -11 |
| Bur, NW, NE, MR | 4 | 1 | 2 | 0 | -2 | 5 |
| Surrey, Delta, <br> Langley, Fraser V | 4 | 5 | -10 | 0 | 7 | 6 |
| Point Roberts | -7 | 0 | 1 | 0 | 5 | 0 |
| sum | -5 | 0 | 0 | 0 | 5 | 0 |

Table A. 10 Fall Weekend Origin-Destination Tables for Passenger Trips Northbound Work Trips

Fall Weekend - Work Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 9 | 24 | 58 | 0 | 91 |
| Lynden, Sumas | 23 | 0 | 56 | 0 | 79 |
| Bellingham | 9 | 0 | 121 | 0 | 130 |
| Skagit | 0 | 0 | 24 | 0 | 24 |
| PSRC | 96 | 0 | 101 | 0 | 198 |
| sum | 137 | 24 | 360 | 0 | 521 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 10 | 20 | 65 | 0 | 95 |
| Lynden, Sumas | 17 | 4 | 56 | 0 | 78 |
| Bellingham | 11 | 1 | 117 | 0 | 129 |
| Skagit | 3 | 2 | 16 | 0 | 22 |
| PSRC | 94 | 1 | 103 | 0 | 199 |
| sum | 136 | 28 | 357 | 0 | 522 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 2 | -5 | 7 | 0 | 4 |
| Lynden, Sumas | -5 | 4 | 0 | 0 | -1 |
| Bellingham | 2 | 1 | -4 | 0 | -1 |
| Skagit | 3 | 2 | -8 | 0 | -3 |
| PSRC | -3 | 1 | 2 | 0 | 1 |
| sum | -1 | 4 | -3 | 0 | 0 |

Table A. 11 Fall Weekend Origin-Destination Tables for Passenger Trips Southbound Recreation Trips

Fall Weekend - Recreation Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 169 | 339 | 288 | 123 | 1241 | 2160 |
| Bur, NW, NE, MR | 180 | 264 | 116 | 10 | 429 | 1000 |
| Surrey, Delta, <br> Langley, Fraser V | 677 | 1301 | 641 | 168 | 904 | 3691 |
| Point Roberts | 28 | 10 | 38 | 28 | 0 | 105 |
| sum | 1055 | 1914 | 1084 | 329 | 2575 | 6955 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 167 | 334 | 284 | 121 | 1224 | 2130 |
| Bur, NW, NE, MR | 156 | 284 | 157 | 45 | 423 | 1066 |
| Surrey, Delta, <br> Langley, Fraser V | 675 | 1282 | 632 | 175 | 892 | 3657 |
| Point Roberts | 16 | 30 | 16 | 5 | 35 | 103 |
| sum | 1014 | 1930 | 1089 | 346 | 2575 | 6954 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | -2 | -5 | -4 | -2 | -17 | -31 |
| Bur, NW, NE, MR | -24 | 20 | 41 | 35 | -6 | 65 |
| Surrey, Delta, <br> Langley, Fraser V | -2 | -19 | -9 | 8 | -12 | -34 |
| Point Roberts | -12 | 20 | -22 | -23 | 35 | -2 |
| sum | -41 | 16 | 6 | 17 | 0 | -1 |

Table A. 12 Fall Weekend Origin-Destination Tables for Passenger Trips Northbound Recreation Trips

Fall Weekend - Recreation Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 305 | 116 | 966 | 24 | 1411 |
| Lynden, Sumas | 236 | 352 | 1104 | 9 | 1700 |
| Bellingham | 265 | 60 | 502 | 0 | 826 |
| Skagit | 126 | 0 | 182 | 0 | 308 |
| PSRC | 1284 | 205 | 844 | 0 | 2333 |
| sum | 2217 | 732 | 3597 | 33 | 6579 |

Modeled

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 308 | 117 | 976 | 7 | 1408 |
| Lynden, Sumas | 240 | 358 | 1115 | 7 | 1720 |
| Bellingham | 250 | 77 | 472 | 4 | 803 |
| Skagit | 115 | 18 | 154 | 2 | 289 |
| PSRC | 1285 | 206 | 855 | 12 | 2359 |
| sum | 2197 | 778 | 3573 | 32 | 6579 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 3 | 2 | 10 | -18 | -3 |
| Lynden, Sumas | 4 | 7 | 11 | -1 | 20 |
| Bellingham | -16 | 18 | -30 | 4 | -24 |
| Skagit | -11 | 18 | -28 | 2 | -19 |
| PSRC | 0 | 1 | 12 | 12 | 25 |
| sum | -20 | 45 | -25 | -1 | 0 |

Table A. 13 Fall Weekend Origin-Destination Tables for Passenger Trips Southbound Shopping Trips

Fall Weekend - Shopping Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 197 | 10 | 471 | 20 | 304 | 1003 |
| Bur, NW, NE, MR | 149 | 0 | 225 | 10 | 153 | 537 |
| Surrey, Delta, <br> Langley, Fraser V | 896 | 553 | 896 | 44 | 242 | 2632 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 1242 | 564 | 1592 | 75 | 699 | 4172 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 198 | 14 | 469 | 15 | 305 | 1000 |
| Bur, NW, NE, MR | 156 | 4 | 223 | 7 | 152 | 541 |
| Surrey, Delta, <br> Langley, Fraser V | 895 | 554 | 889 | 48 | 244 | 2630 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 1249 | 572 | 1581 | 70 | 700 | 4172 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 1 | 3 | -3 | -5 | 0 | -3 |
| Bur, NW, NE, MR | 7 | 4 | -2 | -4 | -1 | 5 |
| Surrey, Delta, <br> Langley, Fraser V | -1 | 1 | -7 | 3 | 2 | -2 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 7 | 8 | -11 | -5 | 1 | 0 |

Table A. 14 Fall Weekend Origin-Destination Tables for Passenger Trips Northbound Shopping Trips

Fall Weekend - Shopping Trip (NB)
Observed

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 232 | 119 | 555 | 49 | 955 |
| Lynden, Sumas | 79 | 39 | 397 | 0 | 515 |
| Bellingham | 269 | 98 | 569 | 0 | 936 |
| Skagit | 58 | 4 | 0 | 0 | 62 |
| PSRC | 208 | 12 | 30 | 0 | 250 |
| sum | 847 | 272 | 1551 | 49 | 2718 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 232 | 119 | 554 | 49 | 953 |
| Lynden, Sumas | 79 | 39 | 395 | 0 | 513 |
| Bellingham | 268 | 98 | 568 | 1 | 935 |
| Skagit | 58 | 3 | 2 | 0 | 63 |
| PSRC | 207 | 12 | 34 | 0 | 253 |
| sum | 843 | 272 | 1553 | 50 | 2718 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 0 | 0 | -1 | 0 | -1 |
| Lynden, Sumas | 0 | 0 | -2 | 0 | -2 |
| Bellingham | -1 | 0 | -1 | 1 | -1 |
| Skagit | 0 | 0 | 2 | 0 | 1 |
| PSRC | -1 | 0 | 4 | 0 | 3 |
| sum | -3 | 0 | 2 | 1 | 0 |

Table A. 15 Fall Weekend Origin-Destination Tables for Passenger Trips Southbound Vacation Trips

Fall Weekend - Vacation Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 0 | 0 | 0 | 10 | 96 | 106 |
| Bur, NW, NE, MR | 0 | 10 | 0 | 0 | 0 | 10 |
| Surrey, Delta, <br> Langley, Fraser V | 0 | 10 | 19 | 0 | 156 | 185 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 0 | 20 | 19 | 10 | 252 | 301 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 0 | 7 | 9 | 9 | 90 | 115 |
| Bur, NW, NE, MR | 0 | 3 | 0 | 0 | 2 | 5 |
| Surrey, Delta, <br> Langley, Fraser V | 0 | 16 | 11 | 2 | 151 | 180 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 0 | 26 | 20 | 11 | 243 | 300 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 0 | 7 | 9 | -1 | -6 | 9 |
| Bur, NW, NE, MR | 0 | -7 | 0 | 0 | 2 | -6 |
| Surrey, Delta, <br> Langley, Fraser V | 0 | 6 | -7 | 2 | -5 | -4 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 0 | 6 | 2 | 0 | -9 | -1 |

Table A. 16 Fall Weekend Origin-Destination Tables for Passenger Trips Northbound Vacation Trips

Fall Weekend - Vacation Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 0 | 69 | 24 | 0 | 93 |
| Lynden, Sumas | 0 | 12 | 96 | 0 | 108 |
| Bellingham | 22 | 4 | 0 | 0 | 25 |
| Skagit | 0 | 0 | 48 | 0 | 48 |
| PSRC | 173 | 0 | 136 | 0 | 309 |
| sum | 195 | 84 | 304 | 0 | 582 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 4 | 61 | 28 | 0 | 92 |
| Lynden, Sumas | 5 | 18 | 92 | 0 | 114 |
| Bellingham | 20 | 2 | 3 | 0 | 25 |
| Skagit | 2 | 5 | 45 | 0 | 52 |
| PSRC | 162 | 5 | 132 | 0 | 300 |
| sum | 192 | 92 | 300 | 0 | 584 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 4 | -8 | 3 | 0 | -1 |
| Lynden, Sumas | 5 | 6 | -4 | 0 | 6 |
| Bellingham | -2 | -1 | 3 | 0 | 0 |
| Skagit | 2 | 5 | -3 | 0 | 5 |
| PSRC | -11 | 5 | -3 | 0 | -9 |
| sum | -2 | 7 | -4 | 0 | 1 |

Table A. 17 Summer Weekday Origin-Destination Tables for Passenger Trips - Southbound Work Trips

Summer Weekday - Work Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 142 | 38 | 225 | 31 | 268 | 705 |
| Bur, NW, NE, MR | 124 | 40 | 51 | 17 | 55 | 287 |
| Surrey, Delta, <br> Langley, Fraser V | 367 | 271 | 205 | 54 | 218 | 1116 |
| Point Roberts | 25 | 20 | 47 | 13 | 13 | 119 |
| sum | 657 | 370 | 528 | 116 | 555 | 2227 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 162 | 38 | 205 | 39 | 266 | 710 |
| Bur, NW, NE, MR | 103 | 50 | 64 | 16 | 55 | 288 |
| Surrey, Delta, <br> Langley, Fraser V | 366 | 270 | 207 | 51 | 218 | 1111 |
| Point Roberts | 37 | 19 | 28 | 5 | 27 | 117 |
| sum | 669 | 376 | 505 | 111 | 566 | 2226 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 21 | -1 | -19 | 7 | -3 | 6 |
| Bur, NW, NE, MR | -20 | 10 | 12 | -1 | 0 | 1 |
| Surrey, Delta, <br> Langley, Fraser V | -1 | -1 | 2 | -4 | -1 | -5 |
| Point Roberts | 12 | -2 | -19 | -8 | 14 | -2 |
| sum | 12 | 6 | -24 | -5 | 11 | 0 |

Table A. 18 Summer Weekday Origin-Destination Tables for Passenger Trips - Northbound Work Trips

Summer Weekday - Work Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 269 | 54 | 399 | 26 | 747 |
| Lynden, Sumas | 155 | 88 | 452 | 0 | 694 |
| Bellingham | 152 | 79 | 410 | 52 | 693 |
| Skagit | 19 | 0 | 44 | 0 | 63 |
| PSRC | 171 | 32 | 176 | 13 | 391 |
| sum | 766 | 252 | 1479 | 91 | 2588 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 263 | 70 | 416 | 27 | 775 |
| Lynden, Sumas | 154 | 63 | 451 | 23 | 692 |
| Bellingham | 152 | 62 | 420 | 24 | 658 |
| Skagit | 18 | 6 | 35 | 2 | 61 |
| PSRC | 183 | 42 | 165 | 12 | 402 |
| sum | 768 | 243 | 1488 | 89 | 2588 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | -6 | 16 | 17 | 2 | 28 |
| Lynden, Sumas | -1 | -24 | 0 | 23 | -2 |
| Bellingham | 0 | -17 | 11 | -28 | -35 |
| Skagit | -2 | 6 | -9 | 2 | -2 |
| PSRC | 12 | 10 | -10 | 0 | 11 |
| Sum | 3 | -9 | 8 | -2 | 0 |

Table A. 19 Summer Weekday Origin-Destination Tables for Passenger Trips - Southbound Recreation Trips

Summer Weekday - Recreation Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 208 | 318 | 261 | 35 | 656 | 1478 |
| Bur, NW, NE, MR | 149 | 279 | 107 | 13 | 183 | 731 |
| Surrey, Delta, <br> Langley, Fraser V | 1163 | 2182 | 572 | 95 | 390 | 4401 |
| Point Roberts | 34 | 0 | 14 | 0 | 0 | 48 |
| sum | 1555 | 2779 | 953 | 143 | 1229 | 6659 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 209 | 320 | 230 | 32 | 660 | 1452 |
| Bur, NW, NE, MR | 170 | 316 | 93 | 14 | 162 | 754 |
| Surrey, Delta, <br> Langley, Fraser V | 1144 | 2193 | 586 | 91 | 393 | 4407 |
| Point Roberts | 11 | 18 | 7 | 1 | 10 | 47 |
| sum | 1534 | 2847 | 917 | 138 | 1224 | 6661 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 1 | 2 | -30 | -2 | 4 | -26 |
| Bur, NW, NE, MR | 21 | 38 | -14 | 0 | -22 | 23 |
| Surrey, Delta, <br> Langley, Fraser V | -19 | 11 | 15 | -4 | 3 | 6 |
| Point Roberts | -23 | 18 | -7 | 1 | 10 | -1 |
| sum | -20 | 68 | -36 | -5 | -5 | 2 |

Table A. 20 Summer Weekday Origin-Destination Tables for Passenger Trips - Northbound Recreation Trips

Summer Weekday - Recreation Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 209 | 110 | 825 | 7 | 1150 |
| Lynden, Sumas | 247 | 201 | 1212 | 0 | 1660 |
| Bellingham | 247 | 71 | 701 | 20 | 1039 |
| Skagit | 42 | 17 | 90 | 0 | 149 |
| PSRC | 383 | 74 | 313 | 0 | 770 |
| sum | 1128 | 472 | 3142 | 27 | 4769 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 217 | 108 | 815 | 7 | 1147 |
| Lynden, Sumas | 267 | 198 | 1208 | 8 | 1682 |
| Bellingham | 244 | 69 | 690 | 6 | 1010 |
| Skagit | 37 | 13 | 95 | 1 | 145 |
| PSRC | 385 | 74 | 322 | 5 | 785 |
| sum | 1151 | 462 | 3130 | 27 | 4769 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 8 | -1 | -10 | 0 | -3 |
| Lynden, Sumas | 20 | -3 | -4 | 8 | 22 |
| Bellingham | -3 | -2 | -11 | -14 | -29 |
| Skagit | -5 | -4 | 4 | 1 | -4 |
| PSRC | 2 | 0 | 8 | 5 | 15 |
| Sum | 23 | -10 | -12 | 0 | 0 |

Table A. 21 Summer Weekday Origin-Destination Tables for Passenger Trips - Southbound Shopping Trips
Summer Weekday - Shopping Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 101 | 18 | 267 | 0 | 75 | 461 |
| Bur, NW, NE, MR | 32 | 10 | 192 | 0 | 49 | 283 |
| Surrey, Delta, <br> Langley, Fraser V | 503 | 375 | 439 | 17 | 19 | 1353 |
| Point Roberts | 28 | 0 | 14 | 0 | 0 | 42 |
| sum | 664 | 403 | 912 | 17 | 143 | 2139 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 108 | 29 | 264 | 0 | 72 | 474 |
| Bur, NW, NE, MR | 31 | 14 | 192 | 0 | 48 | 284 |
| Surrey, Delta, <br> Langley, Fraser V | 496 | 371 | 434 | 17 | 21 | 1339 |
| Point Roberts | 28 | 0 | 14 | 0 | 0 | 42 |
| sum | 663 | 414 | 904 | 18 | 141 | 2139 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 7 | 11 | -3 | 0 | -2 | 13 |
| Bur, NW, NE, MR | -1 | 3 | 0 | 0 | -1 | 1 |
| Surrey, Delta, <br> Langley, Fraser V | -7 | -4 | -5 | 0 | 1 | -14 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | -1 | 11 | -8 | 0 | -2 | 0 |

Table A. 22 Summer Weekday Origin-Destination Tables for Passenger Trips - Northbound Shopping Trips

Summer Weekday - Shopping Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 200 | 85 | 624 | 0 | 909 |
| Lynden, Sumas | 44 | 11 | 470 | 7 | 532 |
| Bellingham | 150 | 63 | 319 | 19 | 551 |
| Skagit | 14 | 0 | 18 | 0 | 31 |
| PSRC | 95 | 37 | 114 | 0 | 245 |
| sum | 503 | 196 | 1544 | 26 | 2268 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 202 | 85 | 630 | 1 | 918 |
| Lynden, Sumas | 44 | 12 | 473 | 7 | 536 |
| Bellingham | 151 | 63 | 321 | 19 | 555 |
| Skagit | 14 | 0 | 19 | 0 | 33 |
| PSRC | 95 | 18 | 114 | 0 | 227 |
| sum | 506 | 179 | 1557 | 27 | 2269 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 2 | 1 | 5 | 1 | 9 |
| Lynden, Sumas | 0 | 1 | 3 | 0 | 4 |
| Bellingham | 1 | 0 | 3 | 0 | 4 |
| Skagit | 0 | 0 | 1 | 0 | 2 |
| PSRC | 0 | -19 | 1 | 0 | -18 |
| Sum | 3 | -17 | 13 | 1 | 1 |

Table A. 23 Summer Weekday Origin-Destination Tables for Passenger Trips - Southbound Vacation Trips

Summer Weekday - Vacation Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 78 | 111 | 99 | 0 | 390 | 677 |
| Bur, NW, NE, MR | 62 | 95 | 25 | 6 | 107 | 296 |
| Surrey, Delta, <br> Langley, Fraser V | 67 | 190 | 60 | 74 | 270 | 661 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 207 | 396 | 183 | 80 | 767 | 1634 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 79 | 106 | 104 | 8 | 390 | 687 |
| Bur, NW, NE, MR | 70 | 82 | 19 | 6 | 109 | 287 |
| Surrey, Delta, <br> Langley, Fraser V | 77 | 183 | 72 | 61 | 268 | 661 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 226 | 371 | 195 | 75 | 767 | 1634 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 1 | -5 | 5 | 8 | 0 | 9 |
| Bur, NW, NE, MR | 8 | -13 | -5 | 0 | 1 | -9 |
| Surrey, Delta, <br> Langley, Fraser V | 10 | -7 | 12 | -13 | -2 | 0 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 19 | -25 | 12 | -5 | -1 | 0 |

Table A. 24 Summer Weekday Origin-Destination Tables for Passenger Trips - Northbound Vacation Trips

Summer Weekday - Vacation Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 7 | 54 | 28 | 0 | 89 |
| Lynden, Sumas | 151 | 134 | 201 | 0 | 485 |
| Bellingham | 33 | 20 | 63 | 0 | 117 |
| Skagit | 19 | 0 | 24 | 0 | 43 |
| PSRC | 257 | 24 | 225 | 0 | 507 |
| sum | 468 | 232 | 541 | 0 | 1241 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 31 | 38 | 19 | 0 | 89 |
| Lynden, Sumas | 150 | 135 | 201 | 0 | 487 |
| Bellingham | 44 | 28 | 49 | 0 | 121 |
| Skagit | 18 | 8 | 19 | 0 | 45 |
| PSRC | 249 | 31 | 219 | 0 | 499 |
| sum | 493 | 240 | 508 | 0 | 1241 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 25 | -16 | -8 | 0 | 0 |
| Lynden, Sumas | -1 | 1 | 1 | 0 | 1 |
| Bellingham | 11 | 8 | -14 | 0 | 4 |
| Skagit | -1 | 8 | -5 | 0 | 2 |
| PSRC | -8 | 7 | -7 | 0 | -8 |
| sum | 25 | 8 | -33 | 0 | 0 |

Table A. 25 Summer Weekend Origin-Destination Tables for Passenger Trips - Southbound Work Trips

Summer Weekend - Work Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 36 | 30 | 45 | 0 | 117 | 227 |
| Bur, NW, NE, MR | 10 | 31 | 10 | 0 | 39 | 90 |
| Surrey, Delta, <br> Langley, Fraser V | 83 | 84 | 66 | 7 | 60 | 301 |
| Point Roberts | 10 | 20 | 30 | 0 | 0 | 60 |
| sum | 138 | 166 | 151 | 7 | 216 | 679 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 33 | 40 | 47 | 1 | 110 | 232 |
| Bur, NW, NE, MR | 14 | 26 | 18 | 1 | 37 | 96 |
| Surrey, Delta, <br> Langley, Fraser V | 83 | 78 | 65 | 3 | 60 | 289 |
| Point Roberts | 12 | 18 | 28 | 1 | 3 | 62 |
| sum | 142 | 162 | 158 | 6 | 210 | 678 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | -3 | 10 | 2 | 1 | -6 | 4 |
| Bur, NW, NE, MR | 4 | -6 | 8 | 1 | -3 | 5 |
| Surrey, Delta, <br> Langley, Fraser V | 0 | -7 | -1 | -4 | 0 | -13 |
| Point Roberts | 2 | -2 | -2 | 1 | 3 | 2 |
| sum | 4 | -4 | 7 | -1 | -6 | -1 |

Table A. 26 Summer Weekend Origin-Destination Tables for Passenger Trips - Northbound Work Trips

Summer Weekend - Work Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 38 | 17 | 165 | 0 | 220 |
| Lynden, Sumas | 11 | 4 | 64 | 0 | 80 |
| Bellingham | 7 | 10 | 84 | 0 | 100 |
| Skagit | 25 | 0 | 25 | 0 | 50 |
| PSRC | 101 | 10 | 43 | 0 | 154 |
| sum | 181 | 42 | 381 | 0 | 603 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 45 | 15 | 160 | 0 | 220 |
| Lynden, Sumas | 20 | 5 | 55 | 0 | 79 |
| Bellingham | 10 | 7 | 82 | 0 | 99 |
| Skagit | 12 | 3 | 34 | 0 | 49 |
| PSRC | 94 | 10 | 53 | 0 | 157 |
| sum | 181 | 39 | 383 | 0 | 603 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 7 | -2 | -5 | 0 | 0 |
| Lynden, Sumas | 9 | 0 | -10 | 0 | 0 |
| Bellingham | 3 | -4 | -2 | 0 | -2 |
| Skagit | -12 | 3 | 9 | 0 | -1 |
| PSRC | -7 | 0 | 10 | 0 | 3 |
| sum | 0 | -2 | 2 | 0 | 0 |

Table A. 27 Summer Weekend Origin-Destination Tables for Passenger Trips - Southbound Recreation Trips

Summer Weekend - Recreation Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 295 | 458 | 629 | 77 | 1742 | 3201 |
| Bur, NW, NE, MR | 172 | 560 | 215 | 66 | 709 | 1722 |
| Surrey, Delta, <br> Langley, Fraser V | 1002 | 1636 | 850 | 79 | 1192 | 4759 |
| Point Roberts | 15 | 10 | 36 | 0 | 5 | 66 |
| sum | 1484 | 2664 | 1729 | 222 | 3649 | 9748 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 295 | 468 | 628 | 69 | 1739 | 3200 |
| Bur, NW, NE, MR | 172 | 560 | 215 | 39 | 709 | 1695 |
| Surrey, Delta, <br> Langley, Fraser V | 1001 | 1634 | 848 | 107 | 1190 | 4780 |
| Point Roberts | 15 | 10 | 36 | 1 | 11 | 73 |
| sum | 1483 | 2673 | 1727 | 217 | 3649 | 9748 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 0 | 11 | -1 | -8 | -4 | -1 |
| Bur, NW, NE, MR | 0 | 0 | 0 | -26 | 0 | -27 |
| Surrey, Delta, <br> Langley, Fraser V | -1 | -2 | -1 | 28 | -2 | 22 |
| Point Roberts | 0 | 0 | 0 | 1 | 5 | 7 |
| sum | -1 | 9 | -2 | -5 | -1 | 0 |

Table A. 28 Summer Weekend Origin-Destination Tables for Passenger Trips - Northbound Recreation Trips

Summer Weekend - Recreation Trip (NB)
Observed

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 275 | 112 | 1055 | 20 | 1463 |
| Lynden, Sumas | 679 | 501 | 1883 | 10 | 3073 |
| Bellingham | 430 | 141 | 890 | 0 | 1462 |
| Skagit | 115 | 57 | 167 | 0 | 339 |
| PSRC | 940 | 199 | 834 | 0 | 1973 |
| sum | 2440 | 1010 | 4830 | 30 | 8310 |

Modeled

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 276 | 112 | 1056 | 20 | 1464 |
| Lynden, Sumas | 680 | 501 | 1885 | 10 | 3076 |
| Bellingham | 431 | 141 | 886 | 2 | 1460 |
| Skagit | 94 | 41 | 200 | 1 | 336 |
| PSRC | 942 | 199 | 835 | 1 | 1977 |
| sum | 2422 | 995 | 4862 | 34 | 8313 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 0 | 0 | 1 | 0 | 1 |
| Lynden, Sumas | 1 | 0 | 2 | 0 | 2 |
| Bellingham | 0 | 0 | -4 | 2 | -2 |
| Skagit | -21 | -16 | 33 | 1 | -3 |
| PSRC | 1 | 0 | 1 | 1 | 4 |
| Sum | -19 | -15 | 32 | 4 | 2 |

Table A. 29 Summer Weekend Origin-Destination Tables for Passenger Trips - Southbound Shopping Trips

Summer Weekend - Shopping Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 110 | 27 | 455 | 0 | 159 | 750 |
| Bur, NW, NE, MR | 53 | 30 | 248 | 0 | 14 | 345 |
| Surrey, Delta, <br> Langley, Fraser V | 485 | 283 | 545 | 42 | 157 | 1513 |
| Point Roberts | 0 | 0 | 29 | 0 | 0 | 29 |
| sum | 648 | 340 | 1277 | 42 | 329 | 2636 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 109 | 28 | 452 | 1 | 158 | 748 |
| Bur, NW, NE, MR | 53 | 41 | 247 | 0 | 14 | 355 |
| Surrey, Delta, <br> Langley, Fraser V | 485 | 283 | 543 | 43 | 155 | 1508 |
| Point Roberts | 7 | 3 | 13 | 0 | 2 | 25 |
| sum | 653 | 355 | 1255 | 44 | 329 | 2636 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | -1 | 1 | -2 | 1 | -1 | -2 |
| Bur, NW, NE, MR | 0 | 11 | -1 | 0 | 0 | 10 |
| Surrey, Delta, <br> Langley, Fraser V | -1 | 0 | -3 | 1 | -2 | -4 |
| Point Roberts | 7 | 3 | -16 | 0 | 2 | -4 |
| sum | 5 | 15 | -22 | 2 | -1 | 0 |

Table A. 30 Summer Weekend Origin-Destination Tables for Passenger Trips - Northbound Shopping Trips

Summer Weekend - Shopping Trip (NB)
Observed

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 148 | 88 | 692 | 7 | 934 |
| Lynden, Sumas | 28 | 48 | 279 | 0 | 355 |
| Bellingham | 241 | 129 | 468 | 7 | 844 |
| Skagit | 29 | 7 | 47 | 0 | 82 |
| PSRC | 48 | 7 | 159 | 0 | 214 |
| sum | 494 | 278 | 1645 | 13 | 2430 |

Modeled

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 165 | 95 | 697 | 6 | 963 |
| Lynden, Sumas | 59 | 24 | 250 | 1 | 334 |
| Bellingham | 241 | 131 | 470 | 7 | 848 |
| Skagit | 12 | 6 | 60 | 0 | 79 |
| PSRC | 40 | 8 | 158 | 0 | 206 |
| sum | 517 | 265 | 1634 | 15 | 2430 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 17 | 7 | 5 | 0 | 29 |
| Lynden, Sumas | 31 | -24 | -29 | 1 | -21 |
| Bellingham | 0 | 2 | 2 | 0 | 4 |
| Skagit | -16 | 0 | 13 | 0 | -3 |
| PSRC | -9 | 2 | -2 | 0 | -8 |
| sum | 23 | -13 | -11 | 2 | 0 |

Table A. 31 Summer Weekend Origin-Destination Tables for Passenger Trips - Southbound Vacation Trips

Summer Weekend - Vacation Trip (SB)
Observed

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 0 | 51 | 0 | 21 | 541 | 613 |
| Bur, NW, NE, MR | 0 | 50 | 23 | 0 | 120 | 192 |
| Surrey, Delta, <br> Langley, Fraser V | 17 | 56 | 43 | 5 | 214 | 335 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 17 | 157 | 66 | 26 | 874 | 1140 |

Modeled

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 2 | 51 | 9 | 21 | 535 | 617 |
| Bur, NW, NE, MR | 1 | 50 | 22 | 1 | 119 | 193 |
| Surrey, Delta, <br> Langley, Fraser V | 17 | 56 | 40 | 6 | 212 | 331 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 20 | 156 | 71 | 28 | 865 | 1141 |

Difference

| Subarea | Blaine, <br> Ferndale | Lynden, <br> Sumas | Bellingham | Skagit | PSRC | sum |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| N/W Van, Van, Rich | 2 | 0 | 9 | 0 | -6 | 4 |
| Bur, NW, NE, MR | 1 | 0 | 0 | 1 | -1 | 0 |
| Surrey, Delta, <br> Langley, Fraser V | 0 | 0 | -3 | 1 | -2 | -4 |
| Point Roberts | 0 | 0 | 0 | 0 | 0 | 0 |
| sum | 3 | -1 | 5 | 2 | -9 | 0 |

Table A. 32 Summer Weekend Origin-Destination Tables for Passenger Trips - Northbound Vacation Trips

Summer Weekend - Vacation Trip (NB)
Observed

| Subarea | NW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 23 | 15 | 113 | 0 | 151 |
| Lynden, Sumas | 218 | 213 | 346 | 0 | 777 |
| Bellingham | 73 | 22 | 131 | 0 | 226 |
| Skagit | 18 | 0 | 8 | 0 | 26 |
| PSRC | 257 | 75 | 227 | 0 | 558 |
| sum | 589 | 325 | 824 | 0 | 1738 |

Modeled

| Subarea | NWW Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 28 | 24 | 96 | 0 | 149 |
| Lynden, Sumas | 214 | 226 | 336 | 0 | 776 |
| Bellingham | 72 | 22 | 131 | 0 | 225 |
| Skagit | 12 | 1 | 12 | 0 | 25 |
| PSRC | 254 | 77 | 233 | 0 | 564 |
| sum | 580 | 350 | 808 | 0 | 1738 |

Difference

| Subarea | N/W Van, <br> Van, Rich | Bur, NW, <br> NE, MR | Surrey, <br> Delta, | Point <br> Roberts | Sum |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Blaine, Ferndale | 6 | 9 | -17 | 0 | -2 |
| Lynden, Sumas | -4 | 13 | -10 | 0 | -1 |
| Bellingham | -1 | 0 | 0 | 0 | -1 |
| Skagit | -6 | 1 | 5 | 0 | -1 |
| PSRC | -3 | 3 | 6 | 0 | 6 |
| Sum | -9 | 25 | -16 | 0 | 0 |

## Appendix B. Trip Generation Rates by Season and Day

Tables B. 1 through B. 4 present auto production trip rates by season, trip purpose, and districts. Tables B. 5 through B. 8 present auto attraction trip rates by season, trip purpose, and districts.
Tables B. 9 through B. 12 present truck production trip rates by season, commodity, and districts. Tables B. 13 through B. 16 present truck attraction trip rates by season, commodity, and districts.

Table B. 1 Auto Production Trip Rates - Fall Weekday

| Region | District | Population <br> (Work) | Population <br> (Recreation) | Population <br> (Shopping) | Population <br> (Vacation) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000664 | 0.000879 | 0.000422 | 0.000206 |
| GVRD | 2 | 0.000585 | 0.001062 | 0.000488 | 0.000291 |
| GVRD | 3 | 0.002126 | 0.004380 | 0.003042 | 0.000633 |
| GVRD | 4 | 0.002280 | 0.002615 | 0.003279 | 0.000064 |
| GVRD | 5 | 0.001917 | 0.003596 | 0.002436 | 0.000239 |
| Whatcom County | 4 | 0.110821 | 0.023977 | 0.021423 | 0.000000 |
| Whatcom County | 1 | 0.015462 | 0.017191 | 0.002345 | 0.001183 |
| Whatcom County | 2 | 0.011492 | 0.023005 | 0.008010 | 0.000898 |
| Whatcom County | 3 | 0.002803 | 0.006095 | 0.002113 | 0.000172 |
| Skagit | 1 | 0.000649 | 0.000618 | 0.000889 | 0.000155 |
| PSRC | 1 | 0.000124 | 0.000174 | 0.000041 | 0.000049 |

Table B. 2 Auto Attraction Trip Rates - Fall Weekday

| Region | Distric <br> t | Non-Service <br> Employees <br> (Work) | Retail <br> Employees <br> (Rec) | Service <br> Employees <br> (Rec) | Retail <br> Employees <br> (Shopping) | Service <br> Employees <br> (Vacation) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.003214 | 0.001250 | 0.001250 | 0.003756 | 0.000481 |
| GVRD | 2 | 0.002395 | 0.001648 | 0.001648 | 0.000917 | 0.000247 |
| GVRD | 3 | 0.007970 | 0.011329 | 0.011329 | 0.008099 | 0.000594 |
| GVRD | 4 | 0.015657 | 0.014663 | 0.014663 | 0.013495 | 0.000000 |
| GVRD | 5 | 0.009014 | 0.009281 | 0.009281 | 0.023776 | 0.001003 |
| Whatcom County | 4 | 1.643326 | 0.113788 | 0.113788 | 0.000000 | 0.000000 |
| Whatcom County | 1 | 0.138306 | 0.150376 | 0.150376 | 0.406922 | 0.005079 |
| Whatcom County | 2 | 0.115493 | 0.142515 | 0.142515 | 0.116070 | 0.039667 |
| Whatcom County | 3 | 0.106470 | 0.020681 | 0.020681 | 0.059165 | 0.000564 |
| Skagit | 1 | 0.001732 | 0.002115 | 0.002115 | 0.000000 | 0.004506 |
| PSRC | 1 | 0.000639 | 0.000409 | 0.000409 | 0.000150 | 0.000346 |

Table B. 3 Auto Production Trip Rates - Fall Weekend

| Region | District | Population <br> (Work) | Population <br> (Recreation) | Population <br> (Shopping) | Population <br> (Vacation) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000224 | 0.002634 | 0.001363 | 0.000186 |
| GVRD | 2 | 0.000110 | 0.002824 | 0.001562 | 0.000190 |
| GVRD | 3 | 0.000493 | 0.005255 | 0.003937 | 0.000308 |
| GVRD | 4 | 0.001096 | 0.006625 | 0.005181 | 0.000491 |
| GVRD | 5 | 0.000309 | 0.005727 | 0.003985 | 0.000270 |
| Whatcom County | 4 | 0.000000 | 0.080207 | 0.038003 | 0.000000 |
| Whatcom County | 1 | 0.003330 | 0.019269 | 0.006255 | 0.000000 |
| Whatcom County | 2 | 0.000574 | 0.020265 | 0.012350 | 0.000763 |
| Whatcom County | 3 | 0.001108 | 0.007017 | 0.004019 | 0.000109 |
| Skagit | 1 | 0.000000 | 0.003470 | 0.000867 | 0.000275 |
| PSRC | 1 | 0.000074 | 0.000820 | 0.000118 | 0.000090 |

Table B. 4 Auto Attraction Trip Rates - Fall Weekend

| Region | District | Non-Service <br> Employees <br> (Work) | Retail <br> Employees <br> (Rec) | Service <br> Employees <br> (Rec) | Retail <br> Employees <br> (Shopping) | Service <br> Employees <br> (Vacation) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.001092 | 0.005106 | 0.005106 | 0.010247 | 0.000401 |
| GVRD | 2 | 0.000321 | 0.002358 | 0.002358 | 0.001147 | 0.000000 |
| GVRD | 3 | 0.002965 | 0.015407 | 0.015407 | 0.012271 | 0.001022 |
| GVRD | 4 | 0.001917 | 0.014599 | 0.014599 | 0.037215 | 0.001616 |
| GVRD | 5 | 0.002408 | 0.018116 | 0.018116 | 0.029792 | 0.002879 |
| Whatcom County | 4 | 0.220326 | 0.089745 | 0.089745 | 0.000000 | 0.000000 |
| Whatcom County | 1 | 0.034797 | 0.162316 | 0.162316 | 0.508278 | 0.013898 |
| Whatcom County | 2 | 0.010995 | 0.270823 | 0.270823 | 0.149036 | 0.015197 |
| Whatcom County | 3 | 0.025144 | 0.031960 | 0.031960 | 0.146235 | 0.001328 |
| Skagit | 1 | 0.001541 | 0.009362 | 0.009362 | 0.003856 | 0.001686 |
| PSRC | 1 | 0.000332 | 0.001887 | 0.001887 | 0.001753 | 0.000309 |

Table B. 5 Auto Production Trip Rates - Summer Weekday

| Region | District | Population <br> (Work) | Population <br> (Recreation) | Population <br> (Shopping) | Population <br> (Vacation) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000799 | 0.001630 | 0.000814 | 0.000768 |
| GVRD | 2 | 0.000462 | 0.002141 | 0.000836 | 0.000987 |
| GVRD | 3 | 0.002105 | 0.006439 | 0.003280 | 0.001245 |
| GVRD | 4 | 0.003658 | 0.009593 | 0.002677 | 0.000774 |
| GVRD | 5 | 0.001482 | 0.007892 | 0.002896 | 0.000770 |
| Whatcom County | 4 | 0.110791 | 0.036951 | 0.052850 | 0.000000 |
| Whatcom County | 1 | 0.012460 | 0.019398 | 0.003571 | 0.001610 |
| Whatcom County | 2 | 0.012050 | 0.011218 | 0.004399 | 0.000710 |
| Whatcom County | 3 | 0.005301 | 0.008387 | 0.001996 | 0.000973 |
| Skagit | 1 | 0.000915 | 0.001086 | 0.000084 | 0.000562 |
| PSRC | 1 | 0.000153 | 0.000304 | 0.000076 | 0.000193 |

Table B. 6 Auto Attraction Trip Rates - Summer Weekday

| Region | Distric <br> t | Non-Service <br> Employees <br> (Work) | Retail <br> Employees <br> (Rec) | Service <br> Employees <br> (Rec) | Retail <br> Employees <br> (Shopping) | Service <br> Employees <br> (Vacation) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.004543 | 0.002902 | 0.002902 | 0.003811 | 0.001367 |
| GVRD | 2 | 0.004033 | 0.000999 | 0.000999 | 0.002181 | 0.000346 |
| GVRD | 3 | 0.009143 | 0.010700 | 0.010700 | 0.008301 | 0.001858 |
| GVRD | 4 | 0.006621 | 0.010070 | 0.010070 | 0.003374 | 0.003626 |
| GVRD | 5 | 0.008738 | 0.008239 | 0.008239 | 0.020058 | 0.003844 |
| Whatcom County | 4 | 1.464878 | 0.071850 | 0.071850 | 0.000000 | 0.000000 |
| Whatcom County | 1 | 0.143410 | 0.184582 | 0.184582 | 0.373151 | 0.034789 |
| Whatcom County | 2 | 0.097078 | 0.385006 | 0.385006 | 0.192734 | 0.132681 |
| Whatcom County | 3 | 0.113617 | 0.031059 | 0.031059 | 0.086471 | 0.008340 |
| Skagit | 1 | 0.005145 | 0.006169 | 0.006169 | 0.003478 | 0.003739 |
| PSRC | 1 | 0.000778 | 0.000852 | 0.000852 | 0.000438 | 0.000748 |

Table B. $7 \quad$ Auto Production Trip Rates - Summer Weekend

| Region | District | Population <br> (Work) | Population <br> (Recreation) | Population <br> (Shopping) | Population <br> (Vacation) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000208 | 0.003924 | 0.001119 | 0.000683 |
| GVRD | 2 | 0.000194 | 0.004664 | 0.001195 | 0.000918 |
| GVRD | 3 | 0.000562 | 0.007810 | 0.003537 | 0.000891 |
| GVRD | 4 | 0.001078 | 0.010669 | 0.003957 | 0.001589 |
| GVRD | 5 | 0.000436 | 0.007417 | 0.002069 | 0.001032 |
| Whatcom County | 4 | 0.027130 | 0.013742 | 0.032613 | 0.000000 |
| Whatcom County | 1 | 0.004224 | 0.023568 | 0.004521 | 0.001585 |
| Whatcom County | 2 | 0.000719 | 0.029336 | 0.005064 | 0.000136 |
| Whatcom County | 3 | 0.001177 | 0.013258 | 0.002728 | 0.001503 |
| Skagit | 1 | 0.000061 | 0.001506 | 0.000171 | 0.000242 |
| PSRC | 1 | 0.000057 | 0.000724 | 0.000085 | 0.000234 |

Table B. 8 Auto Attraction Trip Rates - Summer Weekend

| Region | District | Non-Service <br> Employees <br> (Work) | Retail <br> Employees <br> (Rec) | Service <br> Employees <br> (Rec) | Retail <br> Employees <br> (Shopping) | Service <br> Employees <br> (Vacation) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.001338 | 0.005375 | 0.005375 | 0.003908 | 0.001768 |
| GVRD | 2 | 0.000465 | 0.002974 | 0.002974 | 0.001024 | 0.000552 |
| GVRD | 3 | 0.002837 | 0.011819 | 0.011819 | 0.010800 | 0.000857 |
| GVRD | 4 | 0.001131 | 0.017830 | 0.017830 | 0.018653 | 0.001654 |
| GVRD | 5 | 0.000618 | 0.027890 | 0.027890 | 0.022436 | 0.005625 |
| Whatcom County | 4 | 0.538087 | 0.202635 | 0.202635 | 0.000000 | 0.000000 |
| Whatcom County | 1 | 0.030136 | 0.191989 | 0.191989 | 0.365837 | 0.015777 |
| Whatcom County | 2 | 0.035968 | 0.440752 | 0.440752 | 0.125308 | 0.144495 |
| Whatcom County | 3 | 0.022231 | 0.050123 | 0.050123 | 0.126403 | 0.006248 |
| Skagit | 1 | 0.003190 | 0.014050 | 0.014050 | 0.009203 | 0.001521 |
| PSRC | 1 | 0.000320 | 0.002763 | 0.002763 | 0.000824 | 0.000778 |

Table B. 9 Truck Production Trip Rates - Fall Weekday

|  | Bulk- <br> Printed- <br> Region |  |  |  | District | Unknown | Farm |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000194 | 0.000000 | 0.000000 | 0.001240 | 0.000100 | 0.000401 |
| GVRD | 2 | 0.000103 | 0.000203 | 0.000057 | 0.000170 | 0.000016 | 0.000036 |
| GVRD | 3 | 0.000192 | 0.000499 | 0.000000 | 0.000143 | 0.001686 | 0.000183 |
| GVRD | 4 | 0.000231 | 0.001423 | 0.000034 | 0.002259 | 0.003132 | 0.001015 |
| GVRD | 5 | 0.000341 | 0.000126 | 0.000466 | 0.002085 | 0.005056 | 0.000642 |
| GVRD | 6 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.005803 | 0.002085 |
| GVRD | 7 | 0.000152 | 0.002711 | 0.000771 | 0.002857 | 0.006887 | 0.000432 |
| GVRD | 8 | 0.000000 | 0.002048 | 0.000545 | 0.001632 | 0.005877 | 0.000401 |
| Whatcom County | 1 | 0.005172 | 0.001351 | 0.000633 | 0.001354 | 0.005249 | 0.008143 |
| Whatcom County | 2 | 0.000000 | 0.000000 | 0.001722 | 0.001254 | 0.001215 | 0.002098 |
| Whatcom County | 3 | 0.001546 | 0.007056 | 0.000000 | 0.003985 | 0.002141 | 0.010561 |
| PSRC \& Skagit | 1 | 0.000320 | 0.000204 | 0.000203 | 0.000044 | 0.000234 | 0.000487 |

Table B. 10 Truck Production Trip Rates - Fall Weekend

| Region | District | Bulk-PrintedUnknown | Farm | Food | Wood | Manufacturing | Empty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 2 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 3 | 0.000000 | 0.000000 | 0.000130 | 0.000000 | 0.000661 | 0.000000 |
| GVRD | 4 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002874 | 0.000000 |
| GVRD | 5 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.001017 | 0.000000 |
| GVRD | 6 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 7 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 8 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| Whatcom County | 1 | 0.001792 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| Whatcom County | 2 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| Whatcom County | 3 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| PSRC \& Skagit | 1 | 0.000041 | 0.000000 | 0.000066 | 0.000000 | 0.000105 | 7.09E-05 |

Table B. 11 Truck Production Trip Rates - Summer Weekday

| Region | District | Bulk- <br> Printed- <br> Unknown | Farm | Food | Wood | Manufacturing | Empty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000277 |
| GVRD | 2 | 0.000000 | 0.000000 | 0.000000 | 0.000184 | 0.000737 | 0.000146 |
| GVRD | 3 | 0.000000 | 0.000000 | 0.000000 | 0.000457 | 0.001967 | 0.000939 |
| GVRD | 4 | 0.000474 | 0.000153 | 0.000882 | 0.003095 | 0.003890 | 0.002395 |
| GVRD | 5 | 0.000442 | 0.000494 | 0.000164 | 0.000290 | 0.001188 | 0.000738 |
| GVRD | 6 | 0.004543 | 0.006888 | 0.000000 | 0.001182 | 0.001739 | 0.000718 |
| GVRD | 7 | 0.000930 | 0.001024 | 0.000142 | 0.000763 | 0.004354 | 0.001968 |
| GVRD | 8 | 0.000366 | 0.001823 | 0.001209 | 0.005827 | 0.001655 | 0.000671 |
| Whatcom County | 1 | 0.007616 | 0.000000 | 0.000000 | 0.001733 | 0.007192 | 0.008834 |
| Whatcom County | 2 | 0.001075 | 0.000000 | 0.002439 | 0.000000 | 0.000636 | 0.003869 |
| Whatcom County | 3 | 0.000683 | 0.000000 | 0.003029 | 0.002970 | 0.002524 | 0.006461 |
| PSRC \& Skagit | 1 | 0.000215 | 0.000293 | 0.000059 | 0.000061 | 0.000300 | 0.000755 |

Table B. 12 Truck Production Trip Rates - Summer Weekend

| Region | District | Bulk- <br> PrintedUnknown | Farm | Food | Wood | Manufacturing | Empty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 2 | 0.000000 | 0.000000 | 0.000293 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 3 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000957 | 0.000000 |
| GVRD | 4 | 0.000645 | 0.000000 | 0.000000 | 0.000000 | 0.000311 | 0.000000 |
| GVRD | 5 | 0.000000 | 0.000000 | 0.000000 | 0.000816 | 0.000241 | 0.000000 |
| GVRD | 6 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 7 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000488 |
| GVRD | 8 | 0.000000 | 0.000000 | 0.001265 | 0.002262 | 0.000000 | 0.000000 |
| Whatcom County | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.002936 | 0.000000 |
| Whatcom County | 2 | 0.000000 | 0.000000 | 0.000000 | 0.000611 | 0.000000 | 0.004518 |
| Whatcom County | 3 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| PSRC \& Skagit | 1 | 0.000064 | 0.001537 | 0.000030 | 0.000000 | 0.000108 | 0.00017 |

Table B. 13 Truck Attraction Trip Rates - Fall Weekday

|  | Bulk- <br> Printed- |  |  |  |  |  |  |  | Fistrict | Unknown | Farm | Food | Wood | Manufac- <br> turing | Empty |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Region | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000328 | 0.000415 | 0.000355 |  |  |  |  |  |  |  |  |
| GVRD | 2 | 0.000097 | 0.000026 | 0.000199 | 0.000000 | 0.000273 | 0.000147 |  |  |  |  |  |  |  |  |
| GVRD | 3 | 0.001016 | 0.000065 | 0.000249 | 0.000557 | 0.001325 | 0.000761 |  |  |  |  |  |  |  |  |
| GVRD | 4 | 0.000711 | 0.000000 | 0.000567 | 0.000411 | 0.002509 | 0.003080 |  |  |  |  |  |  |  |  |
| GVRD | 5 | 0.000502 | 0.000088 | 0.000209 | 0.000045 | 0.000521 | 0.001484 |  |  |  |  |  |  |  |  |
| GVRD | 6 | 0.001085 | 0.000000 | 0.001614 | 0.000000 | 0.002141 | 0.000591 |  |  |  |  |  |  |  |  |
| GVRD | 7 | 0.000252 | 0.000268 | 0.000658 | 0.000388 | 0.004395 | 0.002439 |  |  |  |  |  |  |  |  |
| GVRD | 8 | 0.000071 | 0.000172 | 0.000380 | 0.000854 | 0.002224 | 0.000786 |  |  |  |  |  |  |  |  |
| GVRD | 1 | 0.002670 | 0.010694 | 0.000000 | 0.016740 | 0.009361 | 0.006307 |  |  |  |  |  |  |  |  |
| Whatcom County | 2 | 0.004142 | 0.000000 | 0.000094 | 0.005148 | 0.003349 | 0.002528 |  |  |  |  |  |  |  |  |
| Whatcom County | 3 | 0.000000 | 0.075442 | 0.006038 | 0.005067 | 0.003554 | 0.000713 |  |  |  |  |  |  |  |  |
| Whatcom County | 1 | 0.000081 | 0.002536 | 0.000059 | 0.000155 | 0.000401 | 0.000139 |  |  |  |  |  |  |  |  |
| PSRC \& Skagit | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table B. 14 Truck Attraction Trip Rates - Fall Weekend

|  |  | Bulk- <br> Printed- |  |  | Region | District | Unknown |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Farm | Food | Wood | Manufac- <br> turing | Empty |  |  |  |
| GVRD | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 2 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 3 | 0.000378 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 4 | 0.000000 | 0.000000 | 0.000384 | 0.000000 | 0.001190 | 0.000000 |
| GVRD | 5 | 0.000000 | 0.000000 | 0.000177 | 0.000000 | 0.000000 | 0.000113 |
| GVRD | 6 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 7 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.004043 | 0.001556 |
| GVRD | 8 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| Whatcom County | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.004524 | 0.000000 |
| Whatcom County | 2 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.001295 | 0.000000 |
| Whatcom County | 3 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| PSRC \& Skagit | 1 | 0.000000 | 0.000000 | 0.000022 | 0.000000 | 0.000129 | 0.000000 |

Table B. 15 Truck Attraction Trip Rates - Summer Weekday

| Region | District | Bulk-PrintedUnknown | Farm | Food | Wood | Manufacturing | Empty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000357 | 0.001160 | 0.000290 |
| GVRD | 2 | 0.000086 | 0.000052 | 0.000312 | 0.000018 | 0.000699 | 0.000562 |
| GVRD | 3 | 0.000793 | 0.000000 | 0.000000 | 0.000026 | 0.001071 | 0.000556 |
| GVRD | 4 | 0.000803 | 0.000000 | 0.000607 | 0.000504 | 0.001543 | 0.003367 |
| GVRD | 5 | 0.000319 | 0.000000 | 0.000107 | 0.000504 | 0.003765 | 0.002527 |
| GVRD | 6 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000356 | 0.000916 |
| GVRD | 7 | 0.000343 | 0.000187 | 0.000209 | 0.000000 | 0.002726 | 0.002141 |
| GVRD | 8 | 0.000000 | 0.000000 | 0.000173 | 0.000552 | 0.001297 | 0.002115 |
| Whatcom County | 1 | 0.000000 | 0.000000 | 0.002195 | 0.011085 | 0.000851 | 0.020285 |
| Whatcom County | 2 | 0.001651 | 0.072464 | 0.000155 | 0.003249 | 0.004316 | 0.003956 |
| Whatcom County | 3 | 0.004635 | 0.012399 | 0.000000 | 0.008542 | 0.006711 | 0.001236 |
| PSRC \& Skagit | 1 | 0.000206 | 0.002745 | 0.000174 | 0.000263 | 0.000298 | 0.000245 |

Table B. 16 Truck Attraction Trip Rates - Summer Weekend

| Region | District | Bulk-PrintedUnknown | Farm | Food | Wood | Manufacturing | Empty |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GVRD | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 2 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000413 | 0.000000 |
| GVRD | 3 | 0.000381 | 0.000000 | 0.000000 | 0.000000 | 0.000590 | 0.000279 |
| GVRD | 4 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000635 | 0.000000 |
| GVRD | 5 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000838 | 0.000000 |
| GVRD | 6 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| GVRD | 7 | 0.000000 | 0.003553 | 0.000670 | 0.000000 | 0.000000 | 0.006711 |
| GVRD | 8 | 0.000000 | 0.000000 | 0.000000 | 0.000452 | 0.000000 | 0.000000 |
| Whatcom County | 1 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000843 | 0.001489 |
| Whatcom County | 2 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
| Whatcom County | 3 | 0.000000 | 0.000000 | 0.000000 | 0.008473 | 0.000000 | 0.000000 |
| PSRC \& Skagit | 1 | 0.000064 | 0.001537 | 0.000030 | 0.000000 | 0.000108 | 0.00017 |


[^0]:    ${ }^{2}$ This research is found in software developed for FHWA in the Surface Transportation Efficiency Analysis Model (STEAM) and the ITS Deployment Analysis System (IDAS).

[^1]:    R-square

